数列{an}满足a1=a2=1,an+an+1+an+2=cos2nπ3(n∈N*),若数列{an}的前n项和为Sn,则S2013的值为(  ) A.2013 B.671 C.-671 D.−6712

数列{an}满足a1=a2=1,an+an+1+an+2=cos2nπ3(n∈N*),若数列{an}的前n项和为Sn,则S2013的值为(  ) A.2013 B.671 C.-671 D.−6712

题目
数列{an}满足a1=a2=1,a
答案
∵数列{an}满足a1=a2=1,an+an+1+an+2=cos2nπ3(n∈N*),∴从第一项开始,3个一组,则第n组的第一个数为a3n-2a3n-2+a3n-1+a3n=cos2nπ3=cos(2nπ-4π3)=cos(-4π3)=cos4π3=-cosπ3=-12,∵2013÷3=671,即S201...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.