如果A是n阶方阵,A = 单位矩阵;A^k = E(单位矩阵),求证A可以对角化

如果A是n阶方阵,A = 单位矩阵;A^k = E(单位矩阵),求证A可以对角化

题目
如果A是n阶方阵,A = 单位矩阵;A^k = E(单位矩阵),求证A可以对角化
答案
因为 A^k = E 所以 A可逆,即A的特征根非零.
如果A不可对角化,根据亚当标准型,存在 两个非零向量 x1,x2,及一个非零特征根a,使得:
Ax2 = a x2,Ax1 = ax1 + x2.
则:
A^2x1 = A(ax1 + x2) = a^2 x1 + 2ax2
A^3x1 = A(a^2x1 + 2ax2) = a^3 x1 + 3a^2 x2
.
A^k x1 = A(a^(k-1)x1 + (k-1)a^(k-2)x2) = a^k x1 + ka^(k-1)x2
A^k = E ==> A^k x1 = x1,===> ka^(k-1) = 0,矛盾!
所以A可以对角化
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.