1: 0
所以 (kπ - π/2 )<= 2x-π/3 <= (kπ + π/2)
解得 (kπ/2 - π/12 )<= x <= (kπ/2 + 5π/12)
所以 Y 在此区间上 递减
sin(2x-π/3)在[kπ - 3π/2 ,kπ - π/2] 上单调递减
解得 (kπ/2 - 7π/12 )<= x <= (kπ/2 - π/12)
所以 Y 在此区间上 递增
2: a>1
sin(2x-π/3)在[kπ - π/2 ,kπ + π/2] 上单调递增
所以 (kπ - π/2 )<= 2x-π/3 <= (kπ + π/2)
解得 (kπ/2 - π/12 )<= x <= (kπ/2 + 5π/12)
所以 Y 在此区间上 递增
sin(2x-π/3)在[kπ - 3π/2 ,kπ - π/2] 上单调递减
解得 (kπ/2 - 7π/12 )<= x <= (kπ/2 - π/12)
所以 Y 在此区间上 递减