求y=(2tan2/x)/(1-tan平方x/2)的最小正周期

求y=(2tan2/x)/(1-tan平方x/2)的最小正周期

题目
求y=(2tan2/x)/(1-tan平方x/2)的最小正周期
答案

y=(2tan2/x)/(1-tan平方x/2)
=tanx
注意定义域 tan(x/2)≠1且tan(x/2)≠-1且x/2≠kπ+π/2
∴ x≠2kπ+π/2且 x≠2kπ-π/2且 x≠2kπ+π,
∴ 周期是2π(不是π)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.