在直线l:3x-y-1=0上求一点P,使得: (1)P到A(4,1)和B(0,4)的距离之差最大; (2)P到A(4,1)和C(3,4)的距离之和最小.
题目
在直线l:3x-y-1=0上求一点P,使得:
(1)P到A(4,1)和B(0,4)的距离之差最大;
(2)P到A(4,1)和C(3,4)的距离之和最小.
答案
(1)P到A(4,1)和B(0,4)的距离之差最大
显然A、B位于直线L两侧
作B关于直线L的对称点B',连接B'A
则B'A 所在直线与直线L交点即为P
此时,|PA-PB|的差值最大,最大值就是B'A
设B点关于L对称点B’(a.b),
则(b-4)×3=-(a-0),3a-(b+4)-2=0,
得a=3,b=3
AB的直线方程为2X+Y-9=0解方程2X+Y-9=0
与3x-y-1=0可得(2、5)是距离之差最大的点.
(2)P到A(4,1)和C(3,4)的距离之和最小
显然,A、B位于直线L同侧
作点C关于直线L对称点C',连接C'A
则C'A与直线L的交点就是点P
此时,PA+PB之和最小,最小值为C'A
设C关于l的对称点为C′,求出C′的坐标为(
,
).
∴AC′所在直线的方程为19x+17y-93=0.
AC′和l交点的坐标为
P(,).
∴点P的坐标为
P(,) (1)如果两点在一直线的异侧,则作其中某一点关于该直线的对称点,那么经过对称点与另一点的直线与已知直线的交点,即为所求的P点;
(2)如果两点在一直线的同侧,则作其中某一点关于该直线的对称点,那么经过对称点与另一点的直线与已知直线的交点,即为所求的P点.
两点间距离公式的应用.
本题考查直线关于直线对称的问题,平面几何知识,是中档题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- Mr.Green cooked a lot of food.对cooked a lot of food划线提问.
- ABC三种元素的原子具有相同的电子层数
- 掷一枚不均匀的硬币,正面朝上的概率为3/4,将此硬币连掷3次,则恰好有2次正面朝上的概率是(
- 帮忙解一道八年级上册启东中学作业本上的数学题
- living room》急用
- 数列a,b,a,b,a,b.的通项公式
- 音节是shi的词语 ()含
- 在直角三角形ABC中,角C=90度,a+b=10,b/a=4,解这个三角形(角度精确到1度).
- 1.sinb=1/3,sin(a+b)=1 ,sin(2a+b)=