①x2-6x=1, ∴x2-6x-1=0, ∴(x-3)2=10, 即x-3=± ∴x1=3+,x2=3-;
②2x2+2x+1=0, ∵a=2,b=2,c=1, △=b2-4ac=8-8=0, ∴x1=x2=-=-=-;
③2x(x-1)=x-1, ∴(x-1)(2x-1)=0, (x-1)=0,2x-1=0, ∴x1=1,x2=;
④(x-2)2=(2x+3)2 [(x-2)+(2x+3)][(x-2)-(2x+3)]=0, ∴(3x+1)(-x-5)=0, ∴x1=-,x2=-5;
⑤-3x2+22x-24=0, (x-6)(-3x+4)=0, ∴x1=6,x2=;
⑥(3x+5)2-4(3x+5)+3=0, ∴(3x+5-1)(3x+5-3)=0, (3x+4)(3x+2)=0, ∴x1=-,x2=-. |