已知关于x的方程x2-(q+p+1)x+p=0(q≥0)的两个实数根为α、β,且α≤β.(1)试用含有α、β的代数式表示p、q;(2)求证:α≤1≤β;(3)若

已知关于x的方程x2-(q+p+1)x+p=0(q≥0)的两个实数根为α、β,且α≤β.(1)试用含有α、β的代数式表示p、q;(2)求证:α≤1≤β;(3)若

题型:天津难度:来源:
已知关于x的方程x2-(q+p+1)x+p=0(q≥0)的两个实数根为α、β,且α≤β.
(1)试用含有α、β的代数式表示p、q;
(2)求证:α≤1≤β;
(3)若以α、β为坐标的点M(α、β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2),B(
1
2
,1),C(1,1),问是否存在点M,使p+q=
5
4
?若存在,求出点M的坐标;若不存在,请说明理由.
答案
(1)∵α、β为方程x2-(p+q+1)x+p=0(q≥0)的两个实数根,
∴判别式△=(p+q+1)2-4p=(p+q-1)2+4q≥0,
且α+β=p+q+1,αβ=p,
于是p=αβ,
q=α+β-p-1=α+β-αβ-1;
(2)∵(1-a)(1-β)=1-(α+β)+αβ=-q≤0(q≥0),
又α≤β,
∴a≤1≤β;
(3)若使p+q=
5
4
成立,只需α+β=p+q+1=
9
4

①当点M(α,β)在BC边上运动时,
由B(
1
2
,1),C(1,1),
1
2
≤α≤1,β=1,
而α=
9
4
-β=
9
4
-1=
5
4
>1,
故在BC边上存在满足条件的点,其坐标为(
5
4
,1)所以不符合题意舍去;
即在BC边上不存在满足条件的点
②当点M(α,β)在AC边上运动时,
由A(1,2),C(1,1),
得a=1,1≤β≤2,
此时β=
9
4
-α=
9
4
-1=
5
4

又因为1<
5
4
<2,
故在AC边上存在满足条件的点,其坐标为(1,
5
4
);
③当点M(α,β)在AB边上运动时,
由A(1,2),B(
1
2
,1),
1
2
≤α≤1,1≤β≤2,
由平面几何知识得
1-α
1-
1
2
=
2-β
2-1

于是β=2α,





β=2α
α+β=
9
4
解得α=
3
4
,β=
3
2

又因为
1
2
3
4
<1,1<
3
2
<2,
故在AB边上存在满足条件的点,其坐标为(
3
4
3
2
).
综上所述,当点M(α,β)在△ABC的三条边上运动时,存在点(1,
5
4
)和点(
3
4
3
2
),使p+q=
5
4
成立.
举一反三
已知关于x的一元二次方程ax2+bx+c=0没有实数根,甲由于看错了二次项系数,误求得两根为2和4,乙由于看错了一次项系数的符号,误求得两根为-1和4,则
2b+3c
a
的值为(  )
A.2B.3C.5D.-6
题型:单选题难度:简单| 查看答案
设m是满足不等式1≤m≤50的正整数,关于x的二次方程(x-2)2+(a-m)2=2mx+a2-2am的两根都是正整数,求m的值.
题型:不详难度:| 查看答案
已知关于x的一元二次方程x2+bx+c=x有两个实数根x1,x2,且满足x1>0,x2-x1>1.
(1)试证明c>0;
(2)证明b2>2(b+2c);
(3)对于二次函数y=x2+bx+c,若自变量取值为x0,其对应的函数值为y0,则当0<x0<x1时,试比较y0与x1的大小.
题型:解答题难度:一般| 查看答案
若方程x2+3x+m=0的一根是另一根的一半,则m=______,两个根是______.
题型:不详难度:| 查看答案
已知一元二次方程2x2+bx+c=0的两个根是-1,3,则b=______,c=______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.