小明同学将直角三角板直角顶点置于平面直角坐标系的原点O,两直角边与抛物线分别相交于A、B两点.小明发现交点A、B两点的连线总经过一个固定点,则该点坐标为    

小明同学将直角三角板直角顶点置于平面直角坐标系的原点O,两直角边与抛物线分别相交于A、B两点.小明发现交点A、B两点的连线总经过一个固定点,则该点坐标为    

题型:不详难度:来源:
小明同学将直角三角板直角顶点置于平面直角坐标系的原点O,两直角边与抛物线分别相交于A、B两点.小明发现交点A、B两点的连线总经过一个固定点,则该点坐标为            

答案
(0,-2).
解析

试题分析:设A(-m,-m2)(m>0),B(n,-n2)(n>0),表示出直线AB解析式中b=-mn,再利用勾股定理得出mn=4,进而得出直线AB恒过其与y轴的交点C(0,-2).
设A(-m,-m2)(m>0),B(n,-n2)(n>0),
设直线AB的解析式为:y=kx+b,则

①×n+②×m得,(m+n)b=-(m2n+mn2)=-mn(m+n),
∴b=-mn,
由前可知,OB2=n2+n4,OA2=m2+m4,AB2=(n+m)2+(-m2+n22
由AB2=OA2+OB2,得:n2+n4+m2+m4=(n+m)2+(-m2+n22
化简,得mn=4.
∴b=-×4=-2.由此可知不论k为何值,直线AB恒过点(0,-2),
举一反三
如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴交于点A、B两点,与y轴交于点C.
(1)求A、B两点的坐标;
(2)若S△ABC=8,则过A、B、C三点的圆是否与抛物线有第四个交点D?若存在,求出D点坐标;若不存在,说明理由.
(3)将△OAC沿直线AC翻折,点O的对应点为O'.
①若O'落在该抛物线的对称轴上,求实数a的值;
②是否存在正整数a,使得点O'落在△ABC的内部,若存在,求出整数a的值;若不存在,请说明理由.

 
题型:不详难度:| 查看答案
方程的正数根的个数为(  )
A.1个B.2个C.3D.0

题型:不详难度:| 查看答案
在直角坐标系xOy中,已知点P是反比例函数y=(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.

题型:不详难度:| 查看答案
已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程的解为                      

题型:不详难度:| 查看答案
如图,抛物线的图象过点C(0,1),顶点为Q(2,3)点D在x轴正半轴上,且线段OD=OC
(1)求直线CD的解析式;
(2)求抛物线的解析式;
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;
(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由。

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.