二次函数y=ax2+bx+c(a≠0)的图象所示,若∣ax2+bx+c∣=k(k≠0)有两个不相等的实数根,则k的取值范围是(      )A.k<﹣3B

二次函数y=ax2+bx+c(a≠0)的图象所示,若∣ax2+bx+c∣=k(k≠0)有两个不相等的实数根,则k的取值范围是(      )A.k<﹣3B

题型:不详难度:来源:
二次函数y=ax2+bx+c(a≠0)的图象所示,若∣ax2+bx+c∣=k(k≠0)有两个不相等的实数根,则k的取值范围是(      )
A.k<﹣3B.k>﹣3C.k<3D.k>3

答案
D.
解析

试题分析:∵当ax2+bx+c≥0,y=ax2+bx+c(a≠0)的图象在x轴上方,
∴此时y=|ax2+bx+c|=ax2+bx+c,
∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴上方部分的图象,
∵当ax2+bx+c<0时,y=ax2+bx+c(a≠0)的图象在x轴下方,
∴此时y=|ax2+bx+c|=﹣(ax2+bx+c)
∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象,
∵y=ax2+bx+c(a≠0)的顶点纵坐标是﹣3,
∴函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象的顶点纵坐标是3,
∴y=|ax2+bx+c|的图象如图,

∵观察图象可得当k≠0时,
函数图象在直线y=3的上方时,纵坐标相同的点有两个,
函数图象在直线y=3上时,纵坐标相同的点有三个,
函数图象在直线y=3的下方时,纵坐标相同的点有四个,
∴若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,
则函数图象应该在y=3的上边,
故k>3,
故选D.
举一反三
如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.

(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是(  )
A.B.C.D.

题型:不详难度:| 查看答案
如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1

将C1绕点A1旋转180°得C2,交x轴于点A2
将C2绕点A2旋转180°得C3,交x轴于点A3

如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=(     ).
题型:不详难度:| 查看答案
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a-b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是 (     ).(填正确结论的序号)

题型:不详难度:| 查看答案
抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是               

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.