某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资40万元用于该产品的广告促销,已知该产品的本地销售量y1(万台)与本地的广告费用x(万元)之
题型:不详难度:来源:
某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资40万元用于该产品的广告促销,已知该产品的本地销售量y1(万台)与本地的广告费用x(万元)之间的函数关系满足,该产品的外地销售量y2(万台)与外地广告费用t(万元)之间的函数关系可用如图所示的抛物线和线段AB来表示,其中点A为抛物线的顶点.
(1)结合图象,写出y2(万台)与外地广告费用t(万元)之间的函数关系式; (2)求该产品的销售总量y(万台)与外地广告费用t(万元)之间的函数关系式; (3)如何安排广告费用才能使销售总量最大? |
答案
(1)当0≤t≤25时,y2=-0.1(t-25)2+122.5;当25≤t≤40时,y2=122.5;(2)0≤x≤15时,y=3x+122.5;15≤x≤25时,y=-0.1x2+6x+100;25≤x≤40时,y=-0.1x2+5x+125;(3)外地广告费用为25万元,本地广告费用15万元. |
解析
试题分析:(1)此函数为分段函数,第一段为抛物线,可设出顶点坐标式,代入(0,60)即可求解;第二段为常函数,直接可以写出. (2)由于总投资为40万元,本地广告费用为t万元,则外地广告费用为(40-x)万元,分段列出函数关系式. (3)由(2)求得的函数关系式求得销售总量最大时广告费用的安排情况. 试题解析:(1)由函数图象可知, 当0≤t≤25时,函数图象为抛物线的一部分, 设解析式为y=a(t-25)2+122.5, 把(0,60)代入解析式得, y2=-0.1(t-25)2+122.5; 当25≤t≤40时,y2=122.5; (2)设本地广告费用为x万元,则 0≤x≤15时,y=3x+122.5; 15≤x≤25时,y=-0.1x2+6x+100; 25≤x≤40时,y=-0.1x2+5x+125. (3)外地广告费用为25万元,本地广告费用15万元. 考点: 二次函数的应用. |
举一反三
如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=x2+mx+n的图象经过A,C两点.
(1)求此抛物线的函数表达式; (2)求证:∠BEF=∠AOE; (3)当△EOF为等腰三角形时,求此时点E的坐标; (4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的()倍.若存在,请直接写出点P坐标;若不存在,请说明理由. |
二次函数y=ax2+bx+c(a≠0)的图象所示,若∣ax2+bx+c∣=k(k≠0)有两个不相等的实数根,则k的取值范围是( )
|
如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.
(1)求抛物线的解析式. (2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动. ①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围. ②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由. |
如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是( )
|
如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;
将C1绕点A1旋转180°得C2,交x轴于点A2; 将C2绕点A2旋转180°得C3,交x轴于点A3; … 如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=( ). |
最新试题
热门考点