如图,点P是直线:上的点,过点P的另一条直线交抛物线于A、B两点.(1)若直线的解析式为,求A、B两点的坐标; (2)①若点P的坐标为(-2,),当PA=AB时

如图,点P是直线:上的点,过点P的另一条直线交抛物线于A、B两点.(1)若直线的解析式为,求A、B两点的坐标; (2)①若点P的坐标为(-2,),当PA=AB时

题型:不详难度:来源:
如图,点P是直线上的点,过点P的另一条直线交抛物线于A、B两点.

(1)若直线的解析式为,求A、B两点的坐标;
(2)①若点P的坐标为(-2,),当PA=AB时,请直接写出点A的坐标;
②试证明:对于直线上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立.
(3)设直线轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.
答案
(1)A(),B(1,1);(2)①A1(-1,1),A2(-3,9);②过点P、B分别作过点A且平行于轴的直线的垂线,垂足分别为G、H.设P(),A(),由PA=PB可证得△PAG≌△BAH,即得AG=AH,PG=BH,则B(),将点B坐标代入抛物线,得,根据△的值始终大于0即可作出判断;(3)().
解析

试题分析:(1)由题意联立方程组即可求得A、B两点的坐标;
(2)①根据函数图象上的点的坐标的特征结合PA=AB即可求得A点的坐标;
②过点P、B分别作过点A且平行于轴的直线的垂线,垂足分别为G、H.设P(),A(),由PA=PB可证得△PAG≌△BAH,即得AG=AH,PG=BH,则B(),将点B坐标代入抛物线,得,根据△的值始终大于0即可作出判断;
(3)设直线交y轴于D,设A(),B().过A、B两点分别作AG、BH垂直轴于G、H.由△AOB的外心在AB上可得∠AOB=90°,由△AGO∽△OHB,得,则,联立,依题意得是方程的两根,即可求得b的值,设P(),过点P作PQ⊥轴于Q,在Rt△PDQ中,根据勾股定理列方程求解即可.
(1)依题意,得解得 
∴A(),B(1,1);
(2)①A1(-1,1),A2(-3,9);
②过点P、B分别作过点A且平行于轴的直线的垂线,垂足分别为G、H.
设P(),A(),
∵PA=PB,
∴△PAG≌△BAH,
∴AG=AH,PG=BH,
∴B(),
将点B坐标代入抛物线,得
∵△=
∴无论为何值时,关于的方程总有两个不等的实数解,即对于任意给定的点P,抛物线上总能找到两个满足条件的点A;
(3)设直线交y轴于D,设A(),B().
过A、B两点分别作AG、BH垂直轴于G、H.

∵△AOB的外心在AB上,
∴∠AOB=90°,
由△AGO∽△OHB,得

联立
依题意得是方程的两根,

,即D(0,1).
∵∠BPC=∠OCP,
∴DP=DC=3.
设P(),过点P作PQ⊥轴于Q,

在Rt△PDQ中,

解得(舍去),
∴P().
∵PN平分∠MNQ,
∴PT=NT,
.
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
举一反三
如图,已知直线,点A的坐标是(4,0),点D为x轴上位于点A右边的某一点,点B为直线上的一点,以点A、B、D为顶点作正方形.

(1)若图①仅看作符合条件的一种情况,求出所有符合条件的点D的坐标;
(2)在图①中,若点P以每秒1个单位长度的速度沿直线从点O移动到点B,与此同时点Q以相同的速度从点A出发沿着折线A-B-C移动,当点P到达点B时两点停止运动.试探究:在移动过程中,△PAQ的面积最大值是多少?
题型:不详难度:| 查看答案
如图,点B1是抛物线的顶点,点A1、A2都在该抛物线上,四边形OA1B1C1、OA2B2C2均为正方形,点B2在y轴上,直线C2B2与该抛物线交于点,则的值是        

题型:不详难度:| 查看答案
如图,抛物线交x轴的正半轴于点A,交y轴于点B,且OA=OB.

(1)求该抛物线的解析式;
(2)若点M为AB的中点,∠PMQ在AB的同侧以 点M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D. 设AD=m(m>0),BC=n,求n与m之间的函数关系式;
(3)在(2)的条件下,当∠PMQ的一边恰好经过该抛物线与x轴的另一个交点时,求∠PMQ的另一边所在直线的解析式.
题型:不详难度:| 查看答案
已知二次函数y=2(x+1)(x-a),其中a>0,若当x≤2时,y随x增大而减小,当x≥2时y随x增大而增大,则a的值是
A.3B.5C.7D.不确定

题型:不详难度:| 查看答案
如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.

(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;
(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;
(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.