“天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元).(1)求y与x之

“天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元).(1)求y与x之

题型:不详难度:来源:
“天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?
(3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润,应该将销售单价定为多少元?
答案
200;150
解析

试题分析:
(1); 
(2)当x=30元时,最大利润y=200元 .
(3)当x=25时,既能保证销售量最大,又可以每天获得150元的利润.
点评:此题将用待定系数法求二次函数解析式、动点问题和最小值问题相结合,有较大的思维跳跃,考查了同学们的应变能力和综合思维能力,是一道好题.
举一反三
如图,直线交x轴于点A(-1,0),交y轴于B点,;过A、B两点的抛物线交x轴于另一点C(3,0).

(1)求直线AB的表达式;
(2)求抛物线的表达式;
(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
二次函数 y=ax2-ax+1 (a≠0)的图象与x轴有两个交点,其中一个交点为(,0),那么另一个交点坐标为       
题型:不详难度:| 查看答案
,已知A(-4,0),B(-1,4), 将线段AB绕点O,顺时针旋转90°,得到线段A′B′

(1)求直线BB′的解析式;
(2)抛物线y1=ax2-19cx+16c经过A′B′两点,求抛物线的解析式
并画出它的图象;
(3)在(2)的条件下,若直线A′B′的函数解析式为y2=mx+n,观察图
象,当y1y2时,写出x的取值范围.
题型:不详难度:| 查看答案
,抛物线x轴于点Q、M,交y轴于点P,点P关于x轴的对称点为N。

(1)求点M、N的坐标,并判断四边形NMPQ的形状;
(2)如图,坐标系中有一正方形ABCD,其中AB=2cm且CD⊥x轴,CD的中点E与Q点重合,正方形ABCD以1cm/s的速度沿射线QM运动,当正方形ABCD完全进入四边形QPMN时立即停止运动.
①当正方形ABCD与四边形NMPQ的交点个数为2时,求两四边形重叠部分的面积y与运动时间t之间的函数关系式,并写出自变量t的取值范围;
②求运动几秒时,重叠部分的面积为正方形ABCD面积
的一半.
题型:不详难度:| 查看答案
二次函数的图象如图所示,其顶点坐标为M(1,-4).

(1)求二次函数的解析式;
(2)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线与这个新图象有两个公共点时,求的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.