如图,是二次函数图象的一部分,其对称轴为,若其与x轴一交点为A(3,0),则有图象可知不等式的解集是____________.

如图,是二次函数图象的一部分,其对称轴为,若其与x轴一交点为A(3,0),则有图象可知不等式的解集是____________.

题型:不详难度:来源:
如图,是二次函数图象的一部分,其对称轴为,若其与x轴一交点为A(3,0),则有图象可知不等式的解集是____________.
答案

解析

试题分析:由抛物线的对称轴为根据抛物线的对称性可知其与x轴的另一交点为(-1,0),再根据抛物线的开口方向即可作出判断.
∵抛物线的对称轴为,与x轴一交点为A(3,0)
∴与x轴的另一交点为(-1,0)
∴不等式的解集是.
点评:解题的关键是熟练掌握x上方的点的纵坐标大于0,x下方的点的纵坐标小于0.
举一反三
如图,已知二次函数的图象与轴交于AB两点,与轴交于点P,顶点为C(1,-2).

(1)求此函数的关系式;
(2)作点C关于轴的对称点D,顺次连接ACBD.若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知二次函数的图象如图所示,
下列结论:①   ②   ③    ④    ⑤
其中正确的有(     )个
A.1B.2C.3D.4

题型:不详难度:| 查看答案
“天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?
(3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润,应该将销售单价定为多少元?
题型:不详难度:| 查看答案
如图,直线交x轴于点A(-1,0),交y轴于B点,;过A、B两点的抛物线交x轴于另一点C(3,0).

(1)求直线AB的表达式;
(2)求抛物线的表达式;
(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
二次函数 y=ax2-ax+1 (a≠0)的图象与x轴有两个交点,其中一个交点为(,0),那么另一个交点坐标为       
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.