如图1,抛物线y=nx2-11nx+24n (n<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空

如图1,抛物线y=nx2-11nx+24n (n<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空

题型:不详难度:来源:
如图1,抛物线y=nx2-11nx+24n (n<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.

(1)填空:点B的坐标为(_       ),点C的坐标为(_       );
(2)连接OA,若△OAC为等腰三角形.
①求此时抛物线的解析式;
②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
答案
解:(1)B(3,0),C(8,0)      
(2)①作AE⊥OC,垂足为点E
∵△OAC是等腰三角形,∴OE=EC=×8=4,∴BE=4-3=1
又∵∠BAC=90°,∴△ACE∽△BAE,∴
∴AE2=BE·CE=1×4,∴AE=2              
∴点A的坐标为 (4,2)                     
把点A的坐标 (4,2)代入抛物线y=nx2-11nx+24n,得n=-
∴抛物线的解析式为y=-x2x-12        
②∵点M的横坐标为m,且点M在①中的抛物线上
∴点M的坐标为 (m,-m2m-12),由①知,点D的坐标为(4,-2),
则C、D两点的坐标求直线CD的解析式为y=x-4
∴点N的坐标为 (m,m-4)
∴MNm2m-12)-(m-4)=-m2+5m-8 
∴S四边形AMCN=SAMN+SCMNMN·CE=(-m2+5m-8)×4=-(m-5)2+9                           
∴当m=5时,S四边形AMCN=9                    
解析
(1)根据二次函数与x轴交点坐标求法,解一元二次方程即可得出;
(2)①利用菱形性质得出AD⊥OC,则△ACE∽△BAE,即可得出A点坐标,进而求出二次函数解析式;
②首先求出过C、D两点的坐标的直线CD的解析式,进而利用求出即可.
举一反三
如图,已知抛物线经过点(0,-3),且该抛物线与x轴的一个交点在(1,0)和(3,0)之间,那么b的取值范围是                 
题型:不详难度:| 查看答案
已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD的面积的最大值;
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知二次函数的部分对应值如下表:



0
1
3




1
3
1

则下列判断中正确的是
A.抛物线开口向上
B.抛物线与轴交于负半轴
C.当X大于1.5时,Y随着X的增大而减小
D.当=4时,>0
题型:不详难度:| 查看答案
如图,已 知直线 交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为

(1)请直接写出点的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在x轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积.
题型:不详难度:| 查看答案
已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(―2,4),B(8,2),如图所示,则能使y1<y2成立的x的取值范围是               
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.