在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工

在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工

题型:不详难度:来源:
在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:.
(年获利=年销售收入﹣生产成本﹣投资成本)
(1)当销售单价定为28元时,该产品的年销售量为多少万件?
(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?
(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.
答案

解析
解:(1)∵25≤28≤30,
∴把28代入y=40﹣x得, y=12(万件)。
答:当销售单价定为28元时,该产品的年销售量为12万件。
(2)①当 25≤x≤30时,
W=(40﹣x)(x﹣20)﹣25﹣100=﹣x2+60x﹣925=﹣(x﹣30)2﹣25,
∴当x=30时,W最大为﹣25,即公司最少亏损25万。
②当30<x≤35时,
W=(25﹣0.5x)(x﹣20)﹣25﹣100=﹣x2+35x﹣625=﹣(x﹣35)2﹣12.5,
∴当x=35时,W最大为﹣12.5,即公司最少亏损12.5万。
综合①,②得,投资的第一年,公司亏损,最少亏损是12.5万。
答:投资的第一年,公司亏损,最少亏损是12.5万。
(3)①当 25≤x≤30时,W=(40﹣x)(x﹣20﹣1)﹣12.5﹣10=﹣x2+59x﹣782.5,
令W=67.5,则﹣x2+59x﹣782.5=67.5,化简得:x2﹣59x+850=0,
解得  x1=25;x2=34。
此时,当两年的总盈利不低于67.5万元,25≤x≤30;
②当30<x≤35时,W=(25﹣0.5x)(x﹣20﹣1)﹣12.5﹣10=﹣x2+35.5x﹣547.5,
令W=67.5,则﹣x2+35.5x﹣547.5=67.5,化简得:x2﹣71x+1230=0,
解得x1=30;x2=41。
此时,当两年的总盈利不低于67.5万元,30<x≤35,
综上所述,到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是25≤x≤35。
(1)因为25≤28≤30,所以把28代入y=40-x即可求出该产品的年销售量为多少万件。
(2)由(1)中y于x的函数关系式和根据年获利=年销售收入-生产成本-投资成本,得到w和x的二次函数关系,再由x的取值范围不同分别讨论即可知道该公司是盈利还是亏损。
(3)由条件得到w和x在自变量x的不同取值范围的函数关系式,再分别令w=67.5,求出对应x的值,结合y于x的关系中的x取值范围即可确定此时销售单价的范围。
举一反三
若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:
①x1=2,x2=3;   ②
③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中,正确结论的个数是【   】
A.0B.1C.2D.3

题型:不详难度:| 查看答案
已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,yA)、B(0,yB)、C(-1,yC)在该抛物线上.
(Ⅰ)当a=1,b=4,c=10时,①求顶点P的坐标;②求-的值;
(Ⅱ)当y0≥0恒成立时,求的最小值.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.

(1)如图1,当m=时,
①求线段OP的长和tan∠POM的值;
②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;
(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.
①用含m的代数式表示点Q的坐标;
②求证:四边形ODME是矩形.
题型:不详难度:| 查看答案
把二次函数的图像绕原点旋转180°后得到的图像解析式为________.
题型:不详难度:| 查看答案
如图,二次函数的图像交轴于,交轴于,过画直线。

(1)求二次函数的解析式;
(2)点轴正半轴上,且,求的长;
(3)点在二次函数图像上,以为圆心的圆与直线相切,切点为
① 点轴右侧,且(点与点对应),求点的坐标;
② 若的半径为,求点的坐标。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.