如图1,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a>0)的图像顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,

如图1,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a>0)的图像顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,

题型:不详难度:来源:
如图1,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a>0)的图像顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OB=OC,tan∠ACO=.
小题1:求这个二次函数的解析式;
小题2:若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x轴相切,求该圆的半径长度;
小题3:如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP的面积最大?求此时点P的坐标和△AGP的最大面积.
答案

小题1:由OC=OB=3,知C
连接AC,在Rt△AOC中,OA=OC×tan∠ACO=,故A
设所求二次函数的表达式为
将C代入得,解得
∴这个二次函数的表达式为
小题1:①当直线MN在x轴上方时,设所求圆的半径为R(R>0),设M在N的左侧,
∵所求圆的圆心在抛物线的对称轴上,
∴N(R+1,R)代入中得

解得 (舍)
②当直线MN在x轴下方时,设所求圆的半径为,由①可知N,代入抛物线方程可得 (舍)。
小题1:

解析

小题1:根据已知条件,易求得C、A的坐标,可用待定系数法求出抛物线的解析式;
小题1:根据抛物线和圆的对称性,知圆心必在抛物线的对称轴上,由于该圆与x轴相切,可用圆的半径表示出M、N的坐标,将其入抛物线的解析式中,即可求出圆的半径;(需注意的是圆心可能在x轴上方,也可能在x轴下方,需要分类讨论)
小题1:易求得AC的长,由于AC长为定值,当P到直线AG的距离最大时,△APG的面积最大.可过P作y轴的平行线,交AG于Q;设出P点坐标,根据直线AG的解析式可求出Q点坐标,也就求出PQ的长,进而可得出关于△APG的面积与P点坐标的函数关系式,根据函数的性质可求出△APG的最大面积及P点的坐标,根据此时△APG的面积和AG的长,即可求出P到直线AC的最大距离.
举一反三
如图,已知抛物线轴交于A、B两点,与轴交于点C.
小题1:求A、B、C三点的坐标.
小题2:过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
小题3:在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,直接写出所有满足要求的M点的坐标;否则,请说明理由.
题型:不详难度:| 查看答案
 如图:在直角坐标系中,以点A(3,0)为圆心,以5为半径的圆与轴相交于B、C两点,与轴相交于D、E两点.
小题1:若抛物线经过C、D两点,求此抛物线的解析式,并判断点B是否在这条抛物线上?(5分)
小题2:过点E的直线轴于F(,0),求此直线的解析式,这条直线是⊙A的切线吗?请说明理由;(5分)
小题3:探索:是否能在(1)中的抛物线上找到一点Q,使直线BQ与轴正方向所夹锐角的正切值等于?,若能,请直接写出Q点坐标;若不能,请说明理由. (4分)
题型:不详难度:| 查看答案
已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( ▲ )
A.a>0B.b>0C. c<0D.3不是方程ax2+bx+c=0的一个根

题型:不详难度:| 查看答案
已知抛物线y=ax2+bx+c经过O(0,0),A(4,0),B(3,3)三点,连接AB,过点B作BC∥轴交抛物线于点C.动点E、F分别从O、A两点同时出发,其中点E沿线段OA以每秒1个单位长度的速度向A点运动,点F沿折线A→B→C以每秒1个单位长度的速度向C点运动,动点E、F有一个点到达目的点即停止全部运动.设动点运动的时间为t(秒).

小题1:求抛物线的解析式
小题2:记△EFA的面积为S,求S关于t的函数关系式,并求S的最大值;
小题3:是否存在这样的t值,使△EFA是直角三角形?若存在,求出此时点E的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
在平面直角坐标系中,已知抛物线轴交于点(-1,0)、(3,0),与轴的正半轴交于点,顶点为.

小题1:求抛物线解析式及顶点的坐标;
小题2:如图,过点E作BC平行线,交轴于点F,在不添加线和字母情况下,图中面积相等的三角形有:             
小题3:将抛物线向下平移,与轴交于点M、N,与轴的正半轴交于点P,顶点为Q.在四边形MNQP中满足SNPQ = SMNP,求此时直线PN的解析式
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.