(2011•重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是(  )A.a>0B.b<0 C.c<0D.a

(2011•重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是(  )A.a>0B.b<0 C.c<0D.a

题型:不详难度:来源:
(2011•重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是(  )
A.a>0B.b<0 C.c<0D.a+b+c>0

答案
D
解析
∵抛物线的开口向下,
∴a<0;
又∵抛物线的对称轴在y轴的右侧,
∴a,b异号,
∴b>0;
又∵抛物线与y轴的交点在x轴上方,
∴c>0,
又x=1,对应的函数值在x轴上方,
即x=1,y=ax2+bx+c=a+b+c>0;
所以A,B,C选项都错,D选项正确.
故选D.
举一反三
如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直
线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则
y关于x的函数图象大致形状是【   】

题型:不详难度:| 查看答案
如图抛物线与x轴交于A、B两点,与y轴交于点C(0.).且对称抽x=l.
(1)求出抛物线的解析式及A、B两点的坐标;
(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3.若存在,求出点D的坐标;若不存在.说明理由(使用图1);
(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).

题型:不详难度:| 查看答案
(11·漳州)(满分14分)如图1,抛物线ymx2-11mx+24m (m<0) 与x轴交于BC两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.
(1)填空:OB_  ▲  OC_  ▲  
(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;
(3)如图2,设垂直于x轴的直线lxn与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上AC两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
题型:不详难度:| 查看答案
若二次函数,当时,y随x的增大而减小,则m的取值范围是(  )
A.B.C.D.

题型:不详难度:| 查看答案
如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(),B(),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线经过点D、M、N.
(1)求抛物线的解析式.
(2)抛物线上是否存在点P,使得PA=PC,若存在,求出点P的坐标;若不存在,请说明理由.
(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.