如图,抛物线y=ax2+bx+c的顶点M的坐标是(1,3),且与y轴相交于点C(0,2),P(1,1)是抛物线对称轴上的一点.请回答下列问题:(1)写出抛物线的

如图,抛物线y=ax2+bx+c的顶点M的坐标是(1,3),且与y轴相交于点C(0,2),P(1,1)是抛物线对称轴上的一点.请回答下列问题:(1)写出抛物线的

题型:不详难度:来源:
如图,抛物线y=ax2+bx+c的顶点M的坐标是(1,3),且与y轴相交于点C(0,2),P(1,1)是抛物线对称轴上的一点.请回答下列问题:
(1)写出抛物线的解析式______;
(2)点Q是抛物线上的一点,且使△CPQ的面积等于△CMP的面积,则所有满足条件的点Q的个数为:______.
答案
(1)设抛物线的解析式为y=a(x-1)2+3,
把C(0,2)代入得,a+3=2,解得a=-1,
∴抛物线的解析式为y=-(x-1)2+3=-x2+2x+2.
故答案为y=-x2+2x+2.

(2)∵△CPQ的面积等于△CMP的面积,
∴点Q到CP的距离等于点M到CP的距离,即点Q在与PC平行且到CP的距离等于点M到CP的距离的两条平行直线上,如图,
设直线PC的解析式为y=kx+b,
把C(0,2),P(1,1)代入得,k+2=1,b=2,解得k=-1,
∴直线PC的解析式为y=-x+2,
又∵MQ1PC,
∴设直线MQ1的解析式为y=-x+b,
把M(1,3)代入得b=4,
∴直线MQ1的解析式为y=-x+4,
联立





y=-x2+2x+2
y=-x+4
,解得





x1=1
y1=3





x2=2
y2=2

∴Q1的坐标为(2,2);
直线MQ1y=-x+4与y轴的交点N的坐标为(0,4),所以把直线MQ1向下平移4个单位后与PC的距离不变,此时平移后的直线的解析式为y=-x,设它与抛物线的交
点为Q2,Q3,如图,
联立





y=-x2+2x+2
y=-x
,解得





x1=
3+


17
2
y1=
-3-


17
2





x2=
3-


17
2
y2=
-3+


17
2

∴Q2的坐标为(
3-


17
2
-3+


17
2
),Q3的坐标为(
3+


17
2
-3-


17
2
);
所以满足条件的点Q的个数有三个.
故答案为y=-x2+2x+2;3.
举一反三
如图,点E(x1,y1)、F(x2,y2)在抛物线y=ax2+bx+c的对称轴的同侧(点E在点F的左侧),过点E、F分别作x轴的垂线,分别交x轴于点B、D,交直线y=2ax+b于点A、C,设S为直线AB、CD与x轴、直线y=2ax+b所围成图形的面积.则S与y1、y2的数量关系式为:S=______.
题型:不详难度:| 查看答案
某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价为40元,每年销售该产品的总开支(不含进价)总计120万元,在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在如图所示的一次函数关系.
(1)求y关于x的函数关系;
(2)试写出该公司销售该种产品的年获利W(万元)关于销售单价x(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支),当销售单价为何值时年获利最大?并求这个最大值.
题型:不详难度:| 查看答案
已知:在平面直角坐标系xOy中,抛物线y=x2+bx+c经过A(1,1)、B(0,4)两点,M为抛物线的顶点.
(1)求这条抛物线的表达式及顶点M的坐标;
(2)设由(1)求得的抛物线的对称轴为直线l,点A关于直线l的对称点为点C,AC与直线l相交于点D,联结OD、OC.请直接写出C与D两点的坐标,并求∠COM+∠DOM的度数.
题型:不详难度:| 查看答案
已知:抛物线y=ax2+bx+4的对称轴为x=-1,且与x轴相交于点A、B,与y轴相交于点C,其中点A的坐标为(-3,0),
(1)求该抛物线的解析式;
(2)若该抛物线的顶点为D,求△ACD的面积;
(3)在抛物线的对称轴上是否存在点P,使得以A、B、C、P为顶点的四边形是梯形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.