(1)∵四边形OBHC为矩形, ∴CD∥AB, 又D(5,2), ∴C(0,2),OC=2. ∴, 解得, ∴抛物线的解析式为:y=x2-x+2;
(2)点E落在抛物线上.理由如下: 由y=0,得x2-x+2=0. 解得x1=1,x2=4. ∴A(4,0),B(1,0). ∴OA=4,OB=1. 由矩形性质知:CH=OB=1,BH=OC=2,∠BHC=90°, 由旋转、轴对称性质知:EF=1,BF=2,∠EFB=90°, ∴点E的坐标为(3,-1). 把x=3代入y=x2-x+2,得y=•32-•3+2=-1, ∴点E在抛物线上;
(3)存在点P(a,0).记S梯形BCQP=S1,S梯形ADQP=S2,易求S梯形ABCD=8. 当PQ经过点F(3,0)时,易求S1=5,S2=3, 此时S1:S2不符合条件,故a≠3. 设直线PQ的解析式为y=kx+b(k≠0), 则, 解得, ∴y=x-. 由y=2得x=3a-6, ∴Q(3a-6,2) ∴CQ=3a-6,BP=a-1,s1=(3a-6+a-1)•2=4a-7. 下面分两种情形: ①当S1:S2=1:3时,S1=S梯形ABCD=×8=2; ∴4a-7=2,解得a=; ②当S1:S2=3:1时,S1=S梯形ABCD=×8=6; ∴4a-7=6,解得a=; 综上所述:所求点P的坐标为(,0)或(,0) |