(1)∵直线y=-x+3经过B、C两点,∴B(3,0),C(0,3); 已知抛物线经过B、C两点,则有: , 解得; ∴抛物线的解析式为:y=-x2+2x+3;
(2)令(1)所得的抛物线中y=0,得-x2+2x+3=0, 解得x=-1,x=3; ∴A(-1,0), 又∵B(3,0),C(0,3), ∴AB=4,OC=3; S△ABC=AB•OC=×4×3=6;
(3)∵S△ABC=AB•OC,S△ABP=AB•|yP|,且S△ABP=S△ABC, ∴|yP|=OC=1.5, 即P点的纵坐标为±1.5; 由函数的图象知,符合条件的P点共有4个. |