如图,已知抛物线y=12x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA

如图,已知抛物线y=12x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA

题型:不详难度:来源:
如图,已知抛物线y=
1
2
x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.
(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.
答案
(1)∵点A(a,12)在直线y=2x上,
∴12=2a,
解得:a=6,
又∵点A是抛物线y=
1
2
x2+bx上的一点,
将点A(6,12)代入y=
1
2
x2+bx,可得b=-1,
∴抛物线解析式为y=
1
2
x2-x.

(2)∵点C是OA的中点,
∴点C的坐标为(3,6),
把y=6代入y=
1
2
x2-x,
解得:x1=1+


13
,x2=1-


13
(舍去),
故BC=1+


13
-3=


13
-2.

(3)∵直线OA的解析式为:y=2x,
点D的坐标为(m,n),
∴点E的坐标为(
1
2
n,n),点C的坐标为(m,2m),
∴点B的坐标为(
1
2
n,2m),
把点B(
1
2
n,2m)代入y=
1
2
x2-x,可得m=
1
16
n2-
1
4
n,
∴m、n之间的关系式为m=
1
16
n2-
1
4
n.
举一反三
已知二次函数y=-
1
2
x2+bx+c的图象经过A(2,0),B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积和周长.
题型:不详难度:| 查看答案
实践应用:下承式混凝土连续拱圈梁组合桥,其桥面上有三对抛物线形拱圈.图(1)是其中一个拱圈的实物照片,据有关资料记载此拱圈高AB为10.0m(含拱圈厚度和拉杆长度),横向分跨CD为40.0m.
(1)试在示意图(图(2))中建立适当的直角坐标系,求出拱圈外沿抛物线的解析式;
(2)在桥面M(BC的中点)处装有一盏路灯(P点),为了保障安全,规定路灯距拱圈的距离PN不得少于1.1m,试求路灯支柱PM的最低高度.(结果精确到0.1m)
题型:不详难度:| 查看答案
如图所示,在平面直角坐标系xoy中,Rt△AOB的直角边OB,OA分别在x轴上和y轴上,其中OA=2,OB=4,现将Rt△AOB绕着直角顶点O按逆时针方向旋转90°得到△COD,已知一抛物线经过C、D、B三点.
(1)求这条抛物线的解析式;
(2)连接DB,P是线段BC上一动点(P不与B、C重合),过点P作PEBD交CD于E,则当△DEP面积最大时,求PE的解析式;
(3)作点D关于此抛物线对称轴的对称点F,连接CF交对称轴于点M,抛物线上一动点R,x轴上一动点Q,则在抛物线上是否存在点R,x轴上是否存在点Q,使得以C、M、Q、R为顶点的四边形是平行四边形?如果存在,求出Q点的坐标;如果不存在,请说明理由.
题型:不详难度:| 查看答案
已知:如图一次函数y=
1
2
x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=
1
2
x2+bx+c的图象与一次函数y=
1
2
x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知抛物线y=-
3
4
x2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为-1,过点C(0,3)的直线y=-
3
4t
x+3与x轴交于点Q,点P是线段BC上的一个动点,PH⊥OB于点H.若PB=5t,且0<t<1.
(1)确定b,c的值;
(2)写出点B,Q,P的坐标(其中Q,P用含t的式子表示);
(3)依点P的变化,是否存在t的值,使△PQB为等腰三角形?若存在,求出所有t的值;若不存在,说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.