如图,在直角梯形OBCD中,OB=8,BC=1,CD=10.(1)求C,D两点的坐标;(2)若线段OB上存在点P,使PD⊥PC,求过D,P,C三点的抛物线的表达

如图,在直角梯形OBCD中,OB=8,BC=1,CD=10.(1)求C,D两点的坐标;(2)若线段OB上存在点P,使PD⊥PC,求过D,P,C三点的抛物线的表达

题型:不详难度:来源:
如图,在直角梯形OBCD中,OB=8,BC=1,CD=10.
(1)求C,D两点的坐标;
(2)若线段OB上存在点P,使PD⊥PC,求过D,P,C三点的抛物线的表达式.
答案
(1)过点C作CE⊥OD于点E,则四边形OBCE为矩形.
∴CE=OB=8,OE=BC=1.
DE=


CD2-CE2
=


102-82
=6

∴OD=DE+OE=7.
∴C,D两点的坐标分别为C(8,1),D(0,7).(4分)

(2)∵PC⊥PD,
∴∠1+∠2=90度.
又∠1+∠3=90°,
∴∠2=∠3.
∴Rt△PODRt△CBP.
∴PO:CB=OD:BP.
即PO:1=7:(8-PO).
∴PO2-8PO+7=0.
∴PO=1,或PO=7.
∴点P的坐标为(1,0),或(7,0).(6分)
①当点P的坐标为(1,0)时,
设经过D,P,C三点的抛物线表达式为y=ax2+bx+c,





c=7
a+b+c=0
64a+8b+c=1






a=
25
28
b=-
221
28
c=7

∴所求抛物线的表达式为:y=
25
28
x2-
221
28
x+7.(9分)
②当点P为(7,0)时,设经过D,P,C三点的抛物线表达式为y=a′x2+b′x+c′,





c′=7
49a′+8b′+c′=1
64a′+8b′+c′=1






a′=
1
4
b′=-
11
4
c′=7

∴所求抛物线的表达式为:y=
1
4
x2-
11
4
x+7.(10分)
(说明:求出一条抛物线表达式给(3分),求出两条抛物线表达式给4分)
举一反三
在第一象限内,以


5
为半径的圆⊙M经过点A(-1,0),B(3,0),与y轴相交于点C.
(1)在所给的坐标系中作出⊙M,并求M点的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)若D为⊙M上的最低点,E为x轴上的任一点,则在抛物线上是否存在这样的点F,使得以点A、D、E、F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,说出理由.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,二次函数y=ax2+mc(a≠0)的图象经过正方形ABOC的三个顶点,且ac=-2,则m的值为(  )
A.1B.-1C.2D.-2

题型:不详难度:| 查看答案
已知:点P(a+1,a-1)关于x轴的对称点在反比例函数y=-
8
x
(x>0)的图象上,y关于x的函数y=k2x2-(2k+1)x+1的图象与坐标轴只有两个不同的交点A﹑B,求P点坐标和△PAB的面积.
题型:不详难度:| 查看答案
如图,抛物线的对称轴是直线x=2,顶点A的纵坐标为1,点B(4,0)在此抛物线上.

(1)求此抛物线的解析式;
(2)若此抛物线对称轴与x轴交点为C,点D(x,y)为抛物线上一动点,过点D作直线y=2的垂线,垂足为E.
①用含y的代数式表示CD2,并猜想CD2与DE2之间的数量关系,请给出证明;
②在此抛物线上是否存在点D,使∠EDC=120°?如果存在,请直接写出D点坐标;如果不存在,请说明理由.
题型:不详难度:| 查看答案
在直角坐标系xOy中,已知点P是反比例函数y=
2


3
x
(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的
1
2
?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.