由二次函数y=x2+8x-,得y=(x+4)2-, 顶点为(-4,-). 令y=0,则x=-4-≈-9.07或x=-4+≈1.07, 故在红色区域内部及其边界上的整点有: (-9,0),(-8,0),(-7,0),(-6,0),(-5,0),(-4,0),(-3,0),(-2,0),(-1,0),(0,0),(1,0),共11个; (-8,-1),(-8,-2),…,(-8,-9),共9个; (-7,-1),(-7,-2),…,(-7,-16),共16个; (-6,-1),(-6,-2),…,(-6,-21),共21个; (-5,-1),(-5,-2),…,(-5,-24),共24个; (-4,-1),(-4,-2),…,(-4,-25),共25个; 由对称性,可知(-3,-1),(-3,-2),…,(-3,-24),共24个; (-2,-1),(-2,-2),…,(-2,-21),共21个; (-1,-1),(-1,-2),…,(-1,-16),共16个; (0,-1),(0,-2),…,(0,-9),共9个; 一共11+2(9+16+21+24)+25=176个, 故答案为:176.
|