如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=-34x+3的图象与y轴、x轴的交点,点B在二次函数y=18x2+bx+c的图象上,且该

如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=-34x+3的图象与y轴、x轴的交点,点B在二次函数y=18x2+bx+c的图象上,且该

题型:不详难度:来源:
如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=-
3
4
x+3的图象与y轴、x轴的交点,点B在二次函数y=
1
8
x2+bx+c
的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.
(1)试求b,c的值,并写出该二次函数表达式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:
①当P运动到何处时,有PQ⊥AC?
②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?
答案
(1)由y=-
3
4
x+3,
令x=0,得y=3,所以点A(0,3);
令y=0,得x=4,所以点C(4,0),
∵△ABC是以BC为底边的等腰三角形,
∴B点坐标为(-4,0),
又∵四边形ABCD是平行四边形,
∴D点坐标为(8,3),
将点B(-4,0)、点D(8,3)代入二次函数y=
1
8
x2+bx+c,可得





2-4b+c=0
8+8b+c=3

解得:





b=-
1
4
c=-3

故该二次函数解析式为:y=
1
8
x2-
1
4
x-3.

(2)∵OA=3,OB=4,
∴AC=5.
①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5-t,
∵PQ⊥AC,
∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,
∴△APQ△CAO,
AP
AC
=
AQ
CO
,即
t
5
=
5-t
4

解得:t=
25
9

即当点P运动到距离A点
25
9
个单位长度处,有PQ⊥AC.
②∵S四边形PDCQ+S△APQ=S△ACD,且S△ACD=
1
2
×8×3=12,
∴当△APQ的面积最大时,四边形PDCQ的面积最小,
当动点P运动t秒时,AP=t,CQ=t,AQ=5-t,
设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH△CAO可得:
h
3
=
5-t
5

解得:h=
3
5
(5-t),
∴S△APQ=
1
2
3
5
(5-t)=
3
10
(-t2+5t)=-
3
10
(t-
5
2
2+
15
8

∴当t=
5
2
时,S△APQ达到最大值
15
8
,此时S四边形PDCQ=12-
15
8
=
81
8

故当点P运动到距离点A
5
2
个单位处时,四边形PDCQ面积最小,最小值为
81
8
举一反三
如图,关于x的二次函数y=x2-2mx-m-2的图象与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于C点
(1)当m为何值时,AC=BC;
(2)当∠BAC=∠BCO时,求这个二次函数的表达式.
题型:不详难度:| 查看答案
宁波市土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列.1996---2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿.宁波市区年GDPy(亿元)与建设用地总量x(万亩)之间存在着如图所示的一次函数关系.
(1)求y关于x的函数关系式.
(2)据调查2005年市区建设用地比2004年增加4万亩,如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?
(3)按以上函数关系式,我市年GDP每增加1亿元,需增建设用地多少万亩?(精确到0.001万亩).
题型:不详难度:| 查看答案
如图,在平面直角坐标系中Rt△AOB≌Rt△CDA,且A(-1,0),B(0,2)抛物线y=ax2+ax-2经过点C.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ为正方形?若存在,求点P、Q的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,把△OAB放置于平面直角坐标系xOy中,∠OAB=90°,OA=2,AB=
3
2
,把△OAB沿x轴的负方向平移2OA的长度后得到△DCE.
(1)若过原点的抛物线y=ax2+bx+c经过点B、E,求此抛物线的解析式;
(2)若点P在该抛物线上移动,当点P在第一象限内时,过点P作PQ⊥x轴于点Q,连结OP.若以O、P、Q为顶点的三角形与以B、C、E为顶点的三角形相似,直接写出点P的坐标;
(3)若点M(-4,n)在该抛物线上,平移抛物线,记平移后点M的对应点为M′,点B的对应点为B′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M′B′CD的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知抛物线y=x2+bx-a2
(1)请你选定a、b适当的值,然后写出这条抛物线与坐标轴的三个交点,并画出过三个交点的圆;
(2)试讨论此抛物线与坐标轴交点分别是1个,2个,3个时,a、b的取值范围,并且求出交点坐标.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.