如图,在直角坐标系xOy中,点P为函数y=14x2在第一象限内的图象上的任一点,点A的坐标为(0,1),直线l过B(0,-1)且与x轴平行,过P作y轴的平行线分

如图,在直角坐标系xOy中,点P为函数y=14x2在第一象限内的图象上的任一点,点A的坐标为(0,1),直线l过B(0,-1)且与x轴平行,过P作y轴的平行线分

题型:不详难度:来源:
如图,在直角坐标系xOy中,点P为函数y=
1
4
x2在第一象限内的图象上的任一点,点A的坐标为(0,1),直线l过B(0,-1)且与x轴平行,过P作y轴的平行线分别交x轴,l于C,Q,连接AQ交x轴于H,直线PH交y轴于R.
(1)求证:H点为线段AQ的中点;
(2)求证:①四边形APQR为平行四边形;②平行四边形APQR为菱形;
(3)除P点外,直线PH与抛物线y=
1
4
x2有无其它公共点并说明理由.
答案
(1)证明:∵A(0,1),B(0,-1),
∴OA=OB.(1分)
又∵BQx轴,
∴HA=HQ;(2分)

(2)证明:①由(1)可知AH=QH,∠AHR=∠QHP,
∵ARPQ,
∴∠RAH=∠PQH,
∴△RAH≌△PQH.(3分)
∴AR=PQ,
又∵ARPQ,
∴四边形APQR为平行四边形.(4分)
②设P(m,
1
4
m2),
∵PQy轴,则Q(m,-1),则PQ=1+
1
4
m2
过P作PG⊥y轴,垂足为G.
在Rt△APG中,AP=


AG2+PG2
=


(
1
4
m2-1)
2
+m2
=


(
1
4
m2+1)
2
=
1
4
m2
+1=PQ,
∴平行四边形APQR为菱形;(6分)

(3)设直线PR为y=kx+b,
由OH=CH,得H(
m
2
,0),P(m,
1
4
m2).
代入得:





m
2
k+b=0
km+b=
1
4
m2






k=
m
2
b=-
1
4
m2

∴直线PR为y=
m
2
x-
1
4
m2
.(7分)
设直线PR与抛物线的公共点为(x,
1
4
x2),代入直线PR关系式得:
1
4
x2-
m
2
x+
1
4
m2=0,
1
4
(x-m)2=0,
解得x=m.得公共点为(m,
1
4
m2).
所以直线PH与抛物线y=
1
4
x2只有一个公共点P.(8分)
举一反三
已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧),且A点坐标为(-4,4).平行于x轴的直线l过(0,-1)点.
(1)求一次函数与二次函数的解析式;
(2)判断以线段AB为直径的圆与直线l的位置关系,并给出证明;
(3)把二次函数的图象向右平移2个单位,再向下平移t个单位(t>0),二次函数的图象与x轴交于M,N两点,一次函数图象交y轴于F点.当t为何值时,过F,M,N三点的圆的面积最小,最小面积是多少?
题型:不详难度:| 查看答案
某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图),如果抛物线的最高点M离墙1米,离地面
40
3
米,求水流下落点B离墙距离OB.
题型:不详难度:| 查看答案
如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作APCB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.
题型:不详难度:| 查看答案
如图,抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点c(0,3).
(1)求此抛物线所对应函数的表达式;
(2)若抛物线的顶点为D,在其对称轴右侧的抛物线上是否存在点P,使得△PCD为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
用长6米的铝合金条制成如图所示的矩形窗框,则这个窗户的最大透光面积为______米2
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.