为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图4).若设绿化

为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图4).若设绿化

题型:不详难度:来源:
为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图4).若设绿化带的BC边长为xm,绿化带的面积为ym2
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,满足条件的绿化带的面积最大.
答案
(1)由题意得:
y=x•
40-x
2
=-
1
2
x2+20x(3分)
自变量x的取值范围是0<x≤25(4分)

(2)y=-
1
2
x2+20x
=-
1
2
(x-20)2+200(6分)
∵20<25,
∴当x=20时,y有最大值200平方米
即当x=20时,满足条件的绿化带面积最大.(8分)
举一反三
如图,抛物线y=ax2+bx-


3
交x轴于A(-3,0)、B(1,0)两点,交y轴于点C,点D在抛物线上,且CDAB,对称轴直线l交x轴于点M,连结CM,将∠CMB绕点M旋转,旋转后的两边分别交直线BC、直线CD于点E、F.
(1)求抛物线的解析式;
(2)当点E为BC中点时,射线MF与抛物线的交点坐标是______;
(3)若ME=


13
CF,求点E的坐标.
题型:不详难度:| 查看答案
如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别相交于A(-1,0)、B(3,0)、C(0,3)三点,其顶点为D.(1)求:经过A、B、C三点的抛物线的解析式;
(2)求四边形ABDC的面积;
(3)试判断△BCD与△COA是否相似?若相似写出证明过程;若不相似,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
)

题型:不详难度:| 查看答案
小胜和小阳用如图所示的两个转盘做游戏,游戏规则如下:分别转两个转盘,将x转盘转到的数字作为横坐标,将y转盘转到的数字作为纵坐标,组成一个点的坐标:(x,y).当这个点在一次函数y=kx的图象上时,小胜得奖品;当这个点在二次函数y=ax2的图象上时,小阳得奖品;其他情况无得奖品.主持人在游戏开始之前分别转了这两个转盘,x盘转到数字3,y盘转到数字9,它们组成点刚好都在这两个函数的图象上.
(1)求k和a的值;
(2)主持人想用列表法求出小胜得奖品和小阳得奖品的概率.请你补全表中他未完成的部分,并写出两人得奖品的概率:P(小胜得奖品)=______,P(小阳得奖品)=______;
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

X
Y
123
6
8
9(3,9)
如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.
如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.