如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,点C的坐标为(0,3).(1)直接写出A、B、D三点坐标;(2)

如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,点C的坐标为(0,3).(1)直接写出A、B、D三点坐标;(2)

题型:不详难度:来源:
如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,点C的坐标为(0,


3
).
(1)直接写出A、B、D三点坐标;
(2)若抛物线y=x2+bx+c过A、D两点,求这条抛物线的解析式,并判断点B是否在所求的抛物线上,说明理由.
答案
(1)连接AC、BC,则∠ACB=90°;
∵AB是⊙O的直径,且AB⊥CD,
∴OC=OD;
易知OC=


3
,则OD=OC=


3
,即D(0,-


3
);
Rt△ABC中,OC⊥AB,由射影定理,得:
OA•OB=OC2=3,
设⊙O的半径为R,则OA=R-1,OB=R+1,代入上式,得:
(R+1)(R-1)=3,解得R=2;
∴OA=1,OB=3,即A(-1,0),B(3,0);
所以A、B、D的坐标分别为:A(-1,0),B(3,0),D(0,-


3
).

(2)将A(-1,0),D(0,-


3
)代入y=x2+bx+c中,得:





c=-


3
1-b+c=0
,解得





b=1-


3
c=-


3

∴y=x2+(1-


3
)x-


3

当x=3时,x2+(1-


3
)x-


3
=9+(1-


3
)×3-


3
=12-4


3
≠0;
∴点B(3,0)不在抛物线y=x2+(1-


3
)x-


3
上.
举一反三
已知二次函数y=x2-2(k+1)x+4k的图象与x轴分别交于点A(x1,0)、B(x2,0),且-
3
2
<x1-
1
2

(1)求k的取值范围;
(2)设二次函数y=x2-2(k+1)x+4k的图象与y轴交于点M,若OM=OB,求二次函数的表达式;
(3)在(2)的条件下,若点N是x轴上的一点,以N、A、M为顶点作平行四边形,该平行四边形的第四个顶点F在二次函数y=x2-2(k+1)x+4k的图象上,请直接写出满足上述条件的平行四边形的面积.
题型:不详难度:| 查看答案
如图,在直角坐标系中,正方形ABOD的边长为a,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OE的解析式为y=2x,直线CF过x轴上的一点C(-
3
5
a
,0)且与OE平行,现正方形以每秒
a
10
的速度匀速沿x轴正方向平行移动,设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S.
(1)当0≤t<4时,写出S与t的函数关系式;
(2)当4≤t≤5时,写出S与t的函数关系式,在这个范围内S有无最大值?若有,请求出最大值,若没有请说明理由.
题型:不详难度:| 查看答案
已知抛物线y=
1
4
x2+1(如图所示).
(1)填空:抛物线的顶点坐标是(______,______),对称轴是______;
(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;
(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,二次函数y=x2+bx+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,顶点为M,△MAB为直角三角形,图象的对称轴为直线x=-2,点P是抛物线上位于A,C两点之间的一个动点,则△PAC的面积的最大值为(  )
A.
27
4
B.
11
2
C.
27
8
D.3

题型:不详难度:| 查看答案
如图,一次函数y=x+2的图象分别交轴、轴于A、B两点,O1为以OB为边长的正方形OBCD的对角线的交点.两动点P、Q同时从A点出发在四边形ABCD上运动,其中动点P以每秒


2
个单位长度的速度沿A→B→A运动后停止,动点Q以每秒2个单位长度的速度沿A→O→D→C→B运动.AO1交于轴于点E,设P、Q运动的时间为t秒.
(1)求经过A、B、C三点的抛物线的解析式;
(2)求出E点的坐标和S△ABE的值;
(3)当Q点运动在折线AD→DC上时,是否存在某一时刻t(秒),使得S△ABE:S△APQ=4:3?若存在,请确定t的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.