已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线

已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线

题型:不详难度:来源:
已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线y=ax2+bx+c(a≠0)上的两动点.
(1)求抛物线的解析式;
(2)以点P为圆心,PO为半径的圆记为⊙P,判断直线l与⊙P的位置关系,并证明你的结论;
(3)设线段PQ=9,G是PQ的中点,求点G到直线l距离的最小值.
答案
(1)∵抛物线y=ax2+bx+c的对称轴是y轴,
∴b=0,
∵抛物线y=ax2+bx+c经过点A(-2,0)、B(0,1)两点,
∴c=1,a=-
1
4

∴所求抛物线的解析式为y=-
1
4
x2+1;

(2)设点P坐标为(p,-
1
4
p2+1),
如图,过点P作PH⊥l,垂足为H,
∵PH=2-(-
1
4
p2+1)=
1
4
p2+1,
OP=


p2+(-
1
4
p2+1)2
=
1
4
p2+1,
∴OP=PH,
∴直线l与以点P为圆心,PO长为半径的圆相切;

(3)如图,分别过点P、Q、G作l的垂线,垂足分别是D、E、F.连接EG并延长交DP的延长线于点K,
∵G是PQ的中点,
∴易证得△EQG≌△KPG,
∴EQ=PK,
由(2)知抛物线y=-
1
4
x2+1上任意一点到原点O的距离等于该点到直线l:y=2的距离,
即EQ=OQ,DP=OP,
∴FG=
1
2
DK=
1
2
(DP+PK)=
1
2
(DP+EQ)=
1
2
(OP+OQ),
∴只有当点P、Q、O三点共线时,线段PQ的中点G到直线l的距离GF最小,
∵PQ=9,
∴GF≥4.5,即点G到直线l距离的最小值是4.5.
举一反三
若抛物线y=x2-(2m+4)+m2-10与x轴交于A(x1,0),B(x2,0).顶点为C.
(1)求m的范围;
(2)若AB=2


2
,求抛物线的解析式;
(3)若△ABC为等边三角形,求m的值.
题型:不详难度:| 查看答案
如图,已知点A(8,0),sin∠ABO=
4
5
,抛物线经过点O、A,且顶点在△AOB的外接圆上,则此抛物线的解析式为(  )
A.y=-
1
2
x2+4x
B.y=-
1
8
x2+x
C.y=
1
2
x2-4x
或y=-
1
8
x2+x
D.y=-
1
2
x2+4x
或y=
1
8
x2-x

题型:不详难度:| 查看答案
已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为
6
5
,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O为坐标原点建立如图所示的直角坐标系,设P、Q分别为AB、OB边上的动点,他们同时分别从点A、O向B点匀速移动,移动的速度都是1厘米/秒,设P、Q移动时间为t秒(0≤t≤4)
(1)试用t的代数式表示P点的坐标;
(2)求△OPQ的面积S(cm2)与t(秒)的函数关系式;当t为何值时,S有最大值,并求出S的最大值;
(3)试问是否存在这样的时刻t,使△OPQ为直角三角形?如果存在,求出t的值,如果不存在,请说明理由.
题型:不详难度:| 查看答案
在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.