已知抛物线y=ax2+bx+c(a>0)的图象经过点B(14,0)和C(0,-8),对称轴为x=4.(1)求该抛物线的解析式;(2)点D在线段AB上且AD=AC

已知抛物线y=ax2+bx+c(a>0)的图象经过点B(14,0)和C(0,-8),对称轴为x=4.(1)求该抛物线的解析式;(2)点D在线段AB上且AD=AC

题型:不详难度:来源:
已知抛物线y=ax2+bx+c(a>0)的图象经过点B(14,0)和C(0,-8),对称轴为x=4.
(1)求该抛物线的解析式;
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x=1上是否存在点M使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在,请说明理由.
答案
(1)∵抛物线过C(0,-8),
∴c=-8,即y=ax2+bx-8,
由函数经过点(14,0)及对称轴为x=4可得





-
b
2a
=4
196a+14b-8=0

解得:





a=
2
21
b=-
16
21

∴该抛物线的解析式为y=
2
21
x2-
16
21
x-8.
(2)

存在直线CD垂直平分PQ.
由函数解析式为y=
2
21
x2-
16
21
x-8,可求出点A坐标为(-6,0),
在Rt△AOC中,AC=


AO2+OC2
=


100
=10=AD,
故可得OD=AD-OA=4,点D在函数的对称轴上,
∵线CD垂直平分PQ,
∴∠PDC=∠QDC,PD=DQ,
由AD=AC可得,∠PDC=∠ACD,
∴∠QDC=∠ACD,
∴DQAC,
又∵DB=AB-AD=20-10=10=AD,
∴点D是AB中点,
∴DQ为△ABC的中位线,
∴DQ=
1
2
AC=5,
∴AP=AD-PD=AD-DQ=10-5=5,
∴t=5÷1=5(秒),
∴存在t=5(秒)时,线段PQ被直线CD垂直平分.
在Rt△BOC中,BC=


OC2+OB2
=


82+142
=2


65

而DQ为△ABC的中位线,Q是BC中点,
∴CQ=


65

∴点Q的运动速度为每秒


65
5
单位长度;
(3)存在,过点Q作QH⊥x轴于H,则QH=
1
2
OC=4,PH=OP+OH=1+7=8,

在Rt△PQH中,PQ=


42+82
=


80
=4


5

①当MP=MQ,即M为顶点,则此时CD与PQ的交点即是M点(上面已经证明CD垂直平分PQ),
设直线CD的直线方程为:y=kx+b(k≠0),
因为点C(0,-8),点D(4,0),
所以可得直线CD的解析式为:y=2x-8,
当x=1时,y=-6,
∴M1(1,-6);
②当PQ为等腰△MPQ的腰时,且P为顶点.
设直线x=1上存在点M(1,y),因为点P坐标为(-1,0),
从而可得PM2=22+y2
又PQ2=80,
则22+y2=80,
即y=±


76

∴M2(1,2


19
),M3(1,-2


19
);
③当PQ为等腰△MPQ的腰时,且Q为顶点,点Q坐标为(7,-4),
设直线x=1存在点M(1,y),
则QM2=62+(y+4)2=80,
解得:y=2


11
-4或-2


11
-4;
∴M4(1,-4+2


11
),M5(1,-4-2


11
);
综上所述:存在这样的五点:
M1(1,-6),M2(1,2


19
),M3(1,-2


19
)M4(1,-4+2


11
),M5(1,-4-2


11
).
举一反三
如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围.
题型:不详难度:| 查看答案
阅读并解答问题
用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.
(1)当x=______时,代数式-2(x-1)2+3有最______(填写大或小)值为______.
(2)当x=______时,代数式-2x2+4x+3有最______(填写大或小)值为______.
(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?
题型:不详难度:| 查看答案
如图所示,桥拱是抛物线形,其函数解析式是y=-
1
4
x2,当水位线在AB位置时,水面宽为12米,这时水面离桥顶的高度h是______米.
题型:不详难度:| 查看答案
已知抛物线y=ax2上的点D、C与x轴上的点A(-6,0)、B(4,0)构成平行四边形ABCD,CD与y轴交于点E(0,6),求a的值及直线BC.
题型:不详难度:| 查看答案
已知:如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连结MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO.
(1)直接写出点D的坐标;
(2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连结OP.若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.