如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2.C2的图象与x轴交于A、B两点(点A在点B的左侧

如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2.C2的图象与x轴交于A、B两点(点A在点B的左侧

题型:不详难度:来源:
如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2.C2的图象与x轴交于A、B两点(点A在点B的左侧).
(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形?如果存在,请求出点G的坐标;如果不存在,请说明理由.
答案
(1)∵将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2
∴抛物线C1的顶点(0,3)向右平移1个单位,再向下平移7个单位得到(1,-4).
∴抛物线C2的顶点坐标为(1,-4).
∴抛物线C2的解析式为y=(x-1)2-4,
即y=x2-2x-3;

(2)证明:由x2-2x-3=0,
解得:x1=-1,x2=3,
∵点A在点B的左侧,
∴A(-1,0),B(3,0),AB=4.
∵抛物线C2的对称轴为x=1,顶点坐标D为(1,-4),
∴CD=4.AC=CB=2.
将x=1代入y=x2+3得y=4,
∴F(1,4),CE=CD.
∴四边形ADBE是平行四边形.
∵ED⊥AB,
∴四边形ADBE是菱形.
S菱形ADBE=2×
1
2
×AB×CE=2×
1
2
×4×4=16.

(3)存在.分OB为平行四边形的边和对角线两种情况:
①当OB为平行四边形的一边时,如图1,
设F(1,y),
∵OB=3,∴G1(-2,y)或G2(4,y).
∵点G在y=x2-2x-3上,
∴将x=-2代入,得y=5;将x=4代入,得y=5.
∴G1(-2,5),G2(4,5).
②当OB为平行四边形的一对角线时,如图2,
设F(1,y),OB的中点M,过点G作GH⊥OB于点H,
∵OB=3,OC=1,∴OM=
3
2
,CM=
1
2

∵△CFM≌△HGM(AAS),∴HM=CM=
1
2
.∴OH=2.
∴G3(2,-y).
∵点G在y=x2-2x-3上,
∴将(2,-y)代入,得-y=-3,即y=3.
∴G3(2,-3).
综上所述,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形,点G的坐标为G1(-2,5),G2(4,5),G3(2,-3).
举一反三
(个008•枣庄)在直角坐标平面中,O为坐标原点,二次函数y=-x+(k-1)x+4的图象与y轴交于点A,与x轴的负半轴交于点B,且S△OAB=a.
(1)求点A与点B的坐标;
(个)求此二次函数的解析式;
(3)如果点d在x轴上,且△ABd是等腰三角形,求点d的坐标.
题型:不详难度:| 查看答案
如图已知点A(-2,4)和点B(1,0)都在抛物线y=mx2+2mx+n上.
(1)求m、n;
(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形AA′B′B为菱形,求平移后抛物线的表达式;
(3)记平移后抛物线的对称轴与直线AB′的交点为点C,试在x轴上找点D,使得以点B′、C、D为顶点的三角形与△ABC相似.
题型:不详难度:| 查看答案
如图,记抛物线y=-x2+1的图象与x正半轴的交点为A,将线段OA分成n等份,设分点分别为P1,P2,…Pn-1,过每个分点作x轴的垂线,分别与抛物线交于点Q1,Q2,…,Qn-1,再记直角三角形OP1Q1,P1P2Q2,…,Pn-2Pn-1Qn-1的面积分别为S1,S2,…,这样就有S1=
n2-1
2n3
,S2=
n2-4
2n3
,…;记W=S1+S2+…+Sn-1,当n越来越大时,你猜想W最接近的常数是(  )
A.
2
3
B.
1
2
C.
1
3
D.
1
4
题型:不详难度:| 查看答案
已知如图抛物线l1与x轴的交点的坐标为(-1,0)和(-5,0),与y轴的交点坐标为(0,2.5).
(1)求抛物线l1的解析式;
(2)抛物线l2与抛物线l1关于原点对称,现有一身高为1.5米的人撑着伞与抛物线l2的对称轴重合,伞面弧AB与抛物线l2重合,头顶最高点C与伞的下沿AB在同一条直线上(如图所示不考虑其他因素),如果雨滴下降的轨迹是沿着直线y=mx+b运动,那么不被淋到雨的m的取值范围是多少?
(3)将伞的下沿AB沿着抛物线l2对称轴上升10厘米至A1B1,A1B1比AB长8厘米,抛物线l2除顶点M不动外仍经过弧A1B1(其余条件不变),那么被雨淋到的几率是扩大了还是缩小了,说明理由.
题型:不详难度:| 查看答案
如图,有一座抛物线形的拱桥,桥下的正常水位为OA,此时水面宽为40米,水面离桥的最大高度为16米,则拱桥所在的抛物线的解析式为______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.