在直角坐标平面内,二次函数的图象顶点为A(1,-4),且过点B(3,0),求该二次函数的解析式.

在直角坐标平面内,二次函数的图象顶点为A(1,-4),且过点B(3,0),求该二次函数的解析式.

题型:金平区模拟难度:来源:
在直角坐标平面内,二次函数的图象顶点为A(1,-4),且过点B(3,0),求该二次函数的解析式.
答案
∵二次函数的图象顶点为A(1,-4),
∴设y=a(x-1)2-4,
用B(3,0)代入得a=1.
故y=(x-1)2-4或y=x2-2x-3.
举一反三
研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y=
1
10
x2+5x+90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p,p(万元)均与x满足一次函数关系.(注:年利润=年销售额-全部费用)
(1)成果表明,在甲地生产并销售x吨时,P=-
1
20
x+14,请你用含x的代数式表示甲地当年的年销售额,并求年利润W(万元)与x之间的函数关系式;
(2)成果表明,在乙地生产并销售x吨时,P=-
x
10
+n(n为常数),且在乙地当年的最大年利润为35万元.试确定n的值;
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-
b
2a
4ac-b2
4a
)
题型:河北难度:| 查看答案
已知函数y1=x,y2=
1
2
x2+
1
2

(Ⅰ)当自变量x=1时,分别计算函数y1、y2的值;
(Ⅱ)说明:对于自变量x的同一个值,均有y1≤y2成立;
(Ⅲ)是否存在二次函数y3=ax2+bx+c同时满足下列两个条件:
①当x=-1时,函数值y1≤y3≤y2; ②对于任意的实数x的同一个值,都有y1≤y3≤y2
若存在,求出满足条件的函数y3的解析式;若不存在,请说明理由.
题型:红桥区一模难度:| 查看答案
某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y(万元)与进货量x(吨)近似满足函数关系y=0.3x;乙种水果的销售利润y(万元)与进货量x(吨)近似满足函数关系y=-0.1x2+bx(其中b为常数),且进货量x为1吨时,销售利润y为1.4万元
(1)若求y(万元)与x(吨)之间的函数关系式.并计算说明:乙种水果进货多少的时候销售利润y(万元)才能最大?最大利润是多少?
(2)甲种水果的销售利润y(万元)要达到乙种水果最大的销售利润y(万元),需要进货多少吨?
(3)如果该批发市场准备进甲、乙两种水果共10吨,请你通过计算说明如何进货(这两种水果各进多少吨)才能获得销售利润之和最大,最大利润是多少?
题型:不详难度:| 查看答案
经过三点(-1,0),(3,0)和(2,-3)的抛物线的解析式是______;顶点坐标是______.
题型:不详难度:| 查看答案
函数y=ax2(a≠0)的图象经过点(a,8),则a的值为(  )
A.±2B.-2C.2D.3
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.