如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△O

如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△O

题型:黑龙江省中考真题难度:来源:
如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).
(1)求此抛物线的解析式;
(2)写出顶点坐标及对称轴;
(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.
答案
解:(1)把(0,0),(2,0)代入y=x2+bx+c,
得:,解得: ,
所以此抛物线的解析式为:y=x2﹣2x;
(2)∵y=x2﹣2x=(x﹣1)2﹣1,
∴顶点为(1,﹣1);对称轴为:直线x=1;
(3)设点B的坐标为(a,b),
×2=3,解得:b=3或b=﹣3,
∵顶点纵坐标为﹣1,
﹣3<﹣1 (或x2﹣2x=﹣3中,x无解),
∴b=3,
∴x2﹣2x=3,解得:x1=3,x2=﹣1,
所以点B的坐标为(3,3)或(﹣1,3).
举一反三
如图,在中,,,动点从点出发,沿方向以的速度向点运动,动点从点同时出发,沿方向以的速度向点运动.当点到达点时,,点同时停止运动.以为一边向上作正方形,过点,交于点.设点的运动时间为,正方形和梯形重合部分的面积为
(1)当_____s时,点与点重合;
(2)当_____s时,点上;
(3)当点,两点之间(不包括,两点)时,求之间的函数关系式.
题型:吉林省中考真题难度:| 查看答案
如图,在轴上有两点,).分别过点,点轴的垂线,交抛物线于点、点.直线交直线于点,直线交直线于点,点、点的纵坐标分别记为.
(1)填空: 当,时,=____,=______.
,时,=____,=______.
(2)对任意,),猜想的大小关系,并证明你的猜想;
(3)若将“抛物线改为”,其它条件不变,请直接写出的大小关系.
连接.当时,直接写出的关系及四边形的形状.
题型:吉林省中考真题难度:| 查看答案
如图所示,已知二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),l为过
点(0,﹣2)且与x轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作
PH⊥l,H为垂足.
(1)求二次函数y=ax2+bx﹣1(a≠0)的解析式;
(2)请直接写出使y<0的对应的x的取值范围;
(3)对应当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值.由此观察其规律,并猜想一个结论,证明对于任意实数m,此结论成立;
(4)试问是否存在实数m可使△POH为正三角形?若存在,求出m的值;若不存在,请说明理由.
题型:湖南省中考真题难度:| 查看答案
阳光公司生产某种产品,每件成本3 元,售价4 元,年销售量为20 万件,为获得更好的效益,公司准备拿出一定的资金做广告。根据经验,每年投入的广告费是(万元)时,产品的销量是原销量的倍,且之间满足:

如果把利润看成是销售总额减去成本费和广告费。
(1)(万元)与广告费(万元)的函数关系式,并注明的取值范围;
(2),要使利润随广告费的增大而增大,求的取值范围。
题型:江苏中考真题难度:| 查看答案
如图,抛物线与x轴交于A.B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.
(1)求抛物线的解析式;
(2)求直线AF的解析式;
(3)在直线AF上是否存在点P,使△CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由
题型:内蒙古自治区中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.