如图,是某市一条河上一座古拱挢的截面图,拱桥桥洞上沿是抛物线形状,抛物线拱桥处于正常水位时水面宽AB为26m,当水位上涨1m时,抛物线拱桥的水面宽CD为24m.

如图,是某市一条河上一座古拱挢的截面图,拱桥桥洞上沿是抛物线形状,抛物线拱桥处于正常水位时水面宽AB为26m,当水位上涨1m时,抛物线拱桥的水面宽CD为24m.

题型:山东省期末题难度:来源:
如图,是某市一条河上一座古拱挢的截面图,拱桥桥洞上沿是抛物线形状,抛物线拱桥处于正常水位时水面宽AB为26m,当水位上涨1m时,抛物线拱桥的水面宽CD为24m.现以水面AB所在直线为x轴,抛物线的对称轴为y轴建立直角坐标系.
(1)求出抛物线的解析式;
(2)经过测算,水面离拱桥顶端1.5m时为警戒水位.某次洪水到来时,小明用仪器测得水面宽为10m,请你帮助小明算一算,此时水面是否超过警戒水位?
答案
解:(1)设抛物线的解析式为
y=ax2+bx+c(a≠0),
∵对称轴为y轴,
∴y=﹣=0,
∴b=0,
∴y=ax2+c,
由题意得:抛物线过点(13,0),(12,1),把
代入得:
解得:
∴抛物线的解析式为y=﹣x2+
(2)由题意,把x=5代入y=﹣x2+
得:y=﹣+=
∴点F的坐标为F(5,),
∴MH=OM﹣OH==1m,
∵1m<1.5m,
∴此时水面超过警戒水位.
举一反三
枇杷是莆田名果之一,某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?
题型:山东省期末题难度:| 查看答案
如图:抛物线经过A(﹣3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式;
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax2+bx+c的对称轴为x=﹣
题型:山东省期末题难度:| 查看答案
一条抛物线y=x2+mx+n经过点(0,3)与(4,3).
(1)求这条抛物线的解析式,并写出它的顶点坐标;
(2)现有一半径为1,圆心P在抛物线上运动的动圆,当⊙P与坐标轴相切时,求圆心P的坐标;
(3)⊙P能与两坐标轴都相切吗?如果不能,试通过上下平移抛物线y=x2+mx+n,使⊙P与两坐标轴都相切.(要说明平移方法)
题型:山东省期末题难度:| 查看答案
研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y=x2+5x+90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p,p(万元)均与x满足一次函数关系.(注:年利润=年销售额﹣全部费用)
(1)成果表明,在甲地生产并销售x吨时,P=﹣x+14,请你用含x的代数式表示甲地当年的年销售额,并求年利润W(万元)与x之间的函数关系式;
(2)成果表明,在乙地生产并销售x吨时,P=﹣+n(n为常数),且在乙地当年的最大年利润为35万元.试确定n的值;
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是
题型:山东省期末题难度:| 查看答案
某商品进价40元/件,当售价为50元/件时,每星期可卖出500件.市场调查反映,如果每件售价每降1元,每星期可多卖出100件,但售价不能低于42元/件,且每星期至少销售800件.设每件降x元(x为正整数),每星期利润为y元.
(1)求y与x的函数关系式并写出自变量x的取值范围;
(2)若某星期利润为5600元,求商品售价.
题型:山东省期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.