在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过

在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过

题型:四川省中考真题难度:来源:
在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.
(1)求经过点D、B、E的抛物线的解析式;
(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;
(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.
答案
解:(1)∵BE⊥DB交x轴于点E,
OABC是正方形,
∴∠DBC=EBA.
在△BCD与△BAE中,

∴△BCD≌△BAE,
∴AE=CD.
∵OABC是正方形,OA=4,D是OC的中点,
∴A(4,0),B(4,4),C(0,4),
D(0,2),
∴E(6,0).
设过点D(0,2),B(4,4),E(6,0)的抛物线解析式为y=ax2+bx+c,则有:,解得
∴经过点D、B、E的抛物线的解析式为:
y=x2+x+2;
(2)结论OF=DG能成立.理由如下:
由题意,当∠DBE绕点B旋转一定的角度后,同理可证得△BCG≌△BAF,
∴AF=CG.
∵xM=
∴yM=xM2+xM+2=
∴M().
设直线MB的解析式为yMB=kx+b,
∵M(),B(4,4),
,解得
∴yMB=x+6,
∴G(0,6),
∴CG=2,DG=4.
∴AF=CG=2,OF=OA﹣AF=2,F(2,0).
∵OF=2,DG=4,
∴结论OF=DG成立;
(3)如图,△PFE为等腰三角形,
可能有三种情况,分类讨论如下:
①若PF=FE.
∵FE=4,BC与OA平行线之间距离为4,
∴此时P点位于射线CB上,
∵F(2,0),
∴P(2,4),此时直线FP⊥x轴,
∴xQ=2,
∴yQ=xQ2+xQ+2=
∴Q1(2,);
②若PF=PE.如图所示,
∵AF=AE=2,BA?FE,
∴△BEF为等腰三角形,
∴此时点P、Q与点B重合,
∴Q2(4,4);
③若PE=EF.
∵FE=4,BC与OA平行线之间距离为4,
∴此时P点位于射线CB上,
∵E(6,0),
∴P(6,4).
设直线yPF的解析式为yPF=kx+b,
∵F(2,0),P(6,4),
,解得
∴yPF=x﹣2.
∵Q点既在直线PF上,也在抛物线上,
x2+x+2=x﹣2,
化简得5x2﹣14x﹣48=0,
解得x1=,x2=﹣2(不合题意,舍去)
∴xQ=2,
∴yQ=xQ﹣2=﹣2=
∴Q3).
综上所述,Q点的坐标为Q1(2,)或
Q2(4,4)或Q3).
举一反三
在平面直角坐标系中,将抛物线先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为 [     ]
A.      
B.
C.
D.
题型:河南省中考真题难度:| 查看答案
如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
题型:湖北省中考真题难度:| 查看答案
已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.
(1)求k的取值范围;
(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2
①求k的值;
②当k≦x≦k+2时,请结合函数图象确定y的最大值和最大值.
题型:湖北省中考真题难度:| 查看答案
如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).
(1)求抛物线的解析式及顶点B的坐标;
(2)求证:CB是△ABE外接圆的切线;
(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)设△AOE沿x轴正方向平移t个单位长度(0<t≦3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.
题型:湖北省中考真题难度:| 查看答案
如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)求抛物线的解析式;
(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≦t≦40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?
题型:湖北省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.