某公司试销一种成本为30元/件的新产品,按规定试销时的销售单价不低于成本单价,又不高于80元/件,试销中每天的销售量y(件)与销售单价x(元/件)满足下表中的函

某公司试销一种成本为30元/件的新产品,按规定试销时的销售单价不低于成本单价,又不高于80元/件,试销中每天的销售量y(件)与销售单价x(元/件)满足下表中的函

题型:山西省中考真题难度:来源:
某公司试销一种成本为30元/件的新产品,按规定试销时的销售单价不低于成本单价,又不高于80元/件,试销中每天的销售量y(件)与销售单价x(元/件)满足下表中的函数关系。

(1)试求y与x之间的函数表达式;
(2)设公司试销该产品每天获得的毛利润为S(元),求S与x之间的函数表达式(毛利润=销售总价-成本总价);
(3)当销售单价定为多少时,该公司试销这种产品每天获得的毛利润最大?最大毛利润是多少?此时每天的销售量是多少?
答案
解:(1)设y与x之间的函数关系满足y=kx+b把x=40,y=500;x=50,y=400分别代入上式得:

解得
∴y=-10x+900,
∵表中其它对应值都满足y=-10x+900,
∴y与x之间的函数关系为一次函数,且函数表达式为y=-10x+900(30≤x≤80);
(2)毛利润S=(x-30)·y
=(x-30)(-10x+900)
=-10x2+1200x-27000(30≤x≤80);
(3)在S=-10x2+1200x-27000中,
∵a=-10<0,
∴当x=时,
∴S最大=-10×602+1200×60-27000=9000(元
)此时每天的销售量为:y=-10×60+900=300(件),
∴当销售单价定为60元/件时,该公司试销这种产品每天获得的毛利润最大,最大毛利润是9000元,此时每天的销售量是300。
举一反三
已知某二次函数的图象如图所示,则这个二次函数的解析式为

[     ]

A.y=2(x+1)2+8
B.y=18(x+1)2-8
C.y=(x-1)2+8
D.y=2(x-1)2-8

题型:广东省中考真题难度:| 查看答案
如图,在△ABC中,AB=AC,E是高AD上的动点,F是点D关于点E的对称点(点F在高AD上,且不与A,D重合),过点F作BC的平行线与AB交于G与AC交于H,连接GE并延长交BC于点I,连接HE并延长交BC于点J,连接GJ,HI。
(1)求证:四边形GHIJ是矩形;
(2)若BC=10,AD=6,设DE=x,S矩形GHIJ=y。
①求y与x的函数关系式,并写出自变量x的取值范围;
②点E在何处时,矩形GHIJ的面积与△AGH的面积相等?

题型:广东省中考真题难度:| 查看答案
某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:

为获得最大利润,销售商应将该品牌电饭锅定价为(    )元。
题型:山西省中考真题难度:| 查看答案
甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P,羽毛球飞行的水平距离s(米)与其距地面高度h(米)之间的关系式为,如图,已知球网AB距原点5米,乙(用线段CD表示)扣球的最大高度为米,设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是(    )。

题型:山西省中考真题难度:| 查看答案
如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8)。
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S,若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止,求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由。

题型:山西省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.