如图,在直角坐标系中,点P的坐标是(n,0)(n>0),抛物线y=-x2+bx+c经过原点O和点P,已知正方形ABCD的三个顶点为A(2,2),B(3,2),D

如图,在直角坐标系中,点P的坐标是(n,0)(n>0),抛物线y=-x2+bx+c经过原点O和点P,已知正方形ABCD的三个顶点为A(2,2),B(3,2),D

题型:辽宁省中考真题难度:来源:
如图,在直角坐标系中,点P的坐标是(n,0)(n>0),抛物线y=-x2+bx+c经过原点O和点P,已知正方形ABCD的三个顶点为A(2,2),B(3,2),D(2,3)。
(1)求c,b并写出抛物线对称轴及y的最大值(用含有n的代数式表示);
(2)求证:抛物线的顶点在函数y=x2的图象上;
(3)若抛物线与直线AD交于点N,求n为何值时,△NPO的面积为1;
(4)若抛物线经过正方形区域ABCD(含边界),请直接写出n的取值范围。
[参考公式:y=ax2+bx+c(a≠0)的顶点坐标是]
答案
解:(1)把x=0,y=0代入y=-x2+bx+c,得c=0,
再把x=n,y=0代入y=-x2+bx,
得-n2+bn=0,
∵n>0,
∴b=n,
∴y=-x2+nx,
由顶点坐标公式及a=-1<0,得
抛物线对称轴为直线x=,y的最大值为
(2)∵抛物线顶点为,把x=代入y=x2=
∴抛物线的顶点在函数y=x2的图象上;
(3)当x=2时,y=2n-4,
∴点N为(2,2n-4),
当n=2时,P、N两点重合,△NPO不存在,
当n>2时,解n(2n-4)=1,得n=1±
∵n>2,
∴n=1+
当0<n<2时,解n(4-2n)=1,得n1=n2=1,
∴n=1+或n=1时,△NPO的面积为1;
(4)3≤n≤4。
举一反三
如图,已知Rt△ABO,∠BAO=90°,以点O为坐标原点,OA所在直线为y轴,建立平面直角坐标系,AO=3,∠AOB=30°,将Rt△ABO沿OB翻折后,点A落在第一象限内的点D处。
(1)求D点坐标;
(2)若抛物线y=ax2+bx+3(a≠0)经过B、D两点,求此抛物线的表达式;
(3)若抛物线的顶点为E,它的对称轴与OB交于点F,点P为射线OB上一动点,过点P作y轴的平行线,交抛物线于点M,是否存在点P,使得以E、F、M、P为顶点的四边形为等腰梯形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由,参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是
题型:辽宁省中考真题难度:| 查看答案
将抛物线y=x2-2向左平移3个单位,所得抛物线的函数表达式为(    )。
题型:辽宁省中考真题难度:| 查看答案
.如图(1),直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P。
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C、P、M为顶点的三角形为等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;
(3)连结AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由;
(4)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值。(图(2)、图(3)供画图探究)
题型:辽宁省中考真题难度:| 查看答案
如图,二次函数y=ax2+bx的图象经过A(1,-1)、B(4,0)两点。
(1)求这个二次函数解析式;
(2)点M为坐标平面内一点,若以点O、A、B、M为顶点的四边形是平行四边形,请直接写出点M的坐标。
题型:辽宁省中考真题难度:| 查看答案
如图,在一个矩形空地ABCD上修建一个矩形花坛AMPQ,要求点M在AB上,点Q在AD上,点P在对角线BD上,若AB=6m,AD=4m,设AM的长为xm,矩形AMPQ的面积为S平方米。
(1)求S与x的函数关系式;
(2)当x为何值时,S有最大值?请求出最大值。

题型:辽宁省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.