抛物线y=x2向右平移2个单位,再向上平移3个单位,得到的抛物线的解析式为 [ ]A.y=(x+2)2+3 B. y=(x-2)2+3 C. y=(x-
题型:浙江省期末题难度:来源:
抛物线y=x2向右平移2个单位,再向上平移3个单位,得到的抛物线的解析式为 |
[ ] |
A.y=(x+2)2+3 B. y=(x-2)2+3 C. y=(x-2)2-3 D. y=(x+2)2-3 |
答案
举一反三
如图是一种新型滑梯的示意图,其中线段PA是高度为6米的平台,滑道AB是函数的图象的一部分,滑道BCD是二次函数图象的一部分,两滑道的连接点B为抛物线的顶点,且点B到地面的距离为2米,当甲同学滑到点C时,距地面的距离为1米,距点B的水平距离CE也为1米。 (1)试求滑道BCD所在抛物线的解析式; (2)试求甲同学从点A滑到地面上点D时,所经过的水平距离。 |
|
如图(1),某建筑物有一抛物线形的大门,小强想知道这道门的高度。 他先测出门的宽度AB=8m,然后用一根长为4m的小竹杆CD竖直地接触地面和门的内壁,并测得AC=1m。 小强画出了如图(2)的草图,请你帮他算一算门的高度OE(精确到0.1m)。 |
|
在二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表: |
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 | y | 7 | 2 | -1 | -2 | m | 2 | 7 | 某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(200-x)件,设这种商品的利润为y元,则y与x的函数关系式为( )。(化成一般式) | 有一座抛物线形拱桥,在正常水位AB时,水面AB宽24 m,拱顶距离水面4 m。以抛物线的顶点为原点,以抛物线的对称轴为y轴,建立如图所示的平面直角坐标系。 (1)求抛物线的解析式; (2)若水位上升3 m就达到警戒线CD的位置,求这时水面CD的宽度。 | |
最新试题
热门考点
|