A、设圆的半径是x,圆切AC于E,切BC于D,切AB于F,如图(1)同样得到正方形OECD,AE=AF,BD=BF,则a-x+b-x=c,求出x=,故本选项错误; B、设圆切AB于F,圆的半径是y,连接OF,如图(2), 则△BCA∽△OFA,∴=, ∴=,解得:y=,故本选项错误; C、连接OE、OD, ∵AC、BC分别切圆O于E、D, ∴∠OEC=∠ODC=∠C=90°, ∵OE=OD, ∴四边形OECD是正方形, ∴OE=EC=CD=OD, 设圆O的半径是r, ∵OE∥BC,∴∠AOE=∠B, ∵∠AEO=∠ODB, ∴△ODB∽△AEO, ∴=, =, 解得:r=,故本选项正确; D、O点连接三个切点,从上至下一次为:OD,OE,OF;并设圆的半径为x; 容易知道BD=BF,所以AD=BD-BA=BF-BA=a+x-c; 又∵b-x=AE=AD=a+x-c;所以x=,故本选项错误. 故选C. |