在直角三角形ABC中,∠CAB=90°,∠ABC=72°,AD是∠CAB的角平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为( 

在直角三角形ABC中,∠CAB=90°,∠ABC=72°,AD是∠CAB的角平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为( 

题型:不详难度:来源:
在直角三角形ABC中,∠CAB=90°,∠ABC=72°,AD是∠CAB的角平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为(  )
A.63°B.45°C.27°D.18°

答案
∵∠CAB=90°,AD是∠CAB的角平分线,
∴∠CAD=
1
2
×90°=45°,
∵CE⊥AD,
∴∠ACE=90°-45°=45°,
又∵∠CAB=90°,∠ABC=72°,
∴∠ACB=90°-72°=18°,
∴∠ECD=∠ACE-∠ACB=45°-18°=27°.
故选C.
举一反三
如图,在△ABC中,∠ACB=90°,CD⊥AB于D,∠A=30°,则AD等于(  )
A.4BDB.3BDC.2BDD.BD

题型:不详难度:| 查看答案
如图,在△ABC中,AD交边BC于点D,∠BAD=15°,∠ADC=4∠BAD,DC=2BD.
(1)求∠B的度数;
(2)求证:∠CAD=∠B.
题型:不详难度:| 查看答案
如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD-AH=AB;④DG=AP+GH.其中正确的是(  )
A.①②③B.①②④C.②③④D.①②③④

题型:不详难度:| 查看答案
△ABC中三边之比为1:1:


2
,则△ABC形状一定不是(  )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.锐角三角形
题型:不详难度:| 查看答案
如图,在△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F.
(1)求DC的长和旋转的角度n;
(2)求图中阴影部分的面积.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.