(1)连接PA,PB,PC, 则S△ABC=S△PAC+S△PBC+S△PAB, ∴BC•h=AB•h1+AC•h2+BC•h3, ∵△ABC是等边三角形, ∴AB=BC=AC, ∴h=h1+h2+h3;
(2)仍有h=h1+h2+h3; 理由:如图:设P在AC上,则h2=0, 连接PB, 则S△ABC=S△PBC+S△PAB, ∴BC•h=AB•h1+BC•h3, ∵△ABC是等边三角形, AB=BC=AC, ∴h=h1+h3; 即h=h1+h2+h3;
(3)h=h1+h2-h3. 连接PA,PB,PC, 则S△ABC=S△PAC+S△PBC-S△PAB, ∴BC•h=AB•h1+AC•h2-BC•h3, ∵△ABC是等边三角形, ∴AB=BC=AC, ∴h=h1+h2-h3.
|