(1)证明:∵∠ABC与∠ACB的平分线交与点P, ∴∠PBC+∠PCB=(∠ABC+∠ACB), ∵∠ABC+∠ACB=180°-∠A, ∴∠P=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=90°+∠A;
(2)证明:∵BP、CP分别为∠ABC、∠ACD的平分线, ∴∠PBC=∠ABC,∠PCD=∠ACD, 根据三角形的外角性质,∠ACD=∠A+∠ABC, ∠PCD=∠PBC+∠P, ∴∠BAC+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P, ∴∠BAC=2∠P, ∴∠P=∠BAC,即∠P=∠A;
(3)BP、CP为△ABC两外角∠ABC、∠ACB的平分线,∠A为x° ∴∠BCP=(∠A+∠ABC)、∠PBC=(∠A+∠ACB), 由三角形内角和定理得,∠BPC=180°-∠BCP-∠PBC, =180°-[∠A+(∠A+∠ABC+∠ACB)], =180°-(∠A+180°), =90°-∠A,即∠P=90°-∠A. |