如图,在四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180°,试说明AD=CD。

如图,在四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180°,试说明AD=CD。

题型:同步题难度:来源:
如图,在四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180°,试说明AD=CD。
答案
解:过点D 作DE⊥BA交BA 的延长线于E,过点D作DF⊥BC,垂足为F
∴∠4=∠5=∠6=90°
∵BD平分∠ABC
∴∠1=∠2
在△BED和△BFD中
∴△BED≌△BFD(AAS)
∴DE=DF(全等三角形的对应边相等)
∵∠A+∠C=180°,∠A+∠3=180°
∴∠3=∠C(等角的补角相等)
在△AED和△CFD中
∴△AED≌△CFD(AAS)
∴AD=CD(全等三角形的对应边相等)。
举一反三
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
(1)当直线MN绕点C旋转到图1的位置时,求证:①△ACD≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明。
题型:同步题难度:| 查看答案
如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB、BC为边作正方形ABEF 和正方形BCMN,连接FN,EC。
求证:FN=EC。
题型:同步题难度:| 查看答案
如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG。
(1)求证:①DE=DG;②DE⊥DG;
(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);
(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想。
题型:同步题难度:| 查看答案
如图,正方形ABCD绕点A逆时针旋转n°后得到正方形AEFG,边EF与CD交于点O。
(1)以图中已标有字母的点为端点连接两条线段(正方形的对角线除外),要求所连接的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由;
(2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为,则旋转的角度n是多少度?
题型:专项题难度:| 查看答案
已知:如图,在五边形ABCDE中,∠B=∠E=90°,BC=ED,∠ACD=∠ADC,求证:AB=AE。
题型:同步题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.