两个大小相同且含30°角的三角板ABC和DEC如图①摆放,使直角顶点重合,将图①中△DEC绕点C逆时针旋转30°得到图②,点F、G分别是CD、DE与AB的交点,

两个大小相同且含30°角的三角板ABC和DEC如图①摆放,使直角顶点重合,将图①中△DEC绕点C逆时针旋转30°得到图②,点F、G分别是CD、DE与AB的交点,

题型:湖北省中考真题难度:来源:
两个大小相同且含30°角的三角板ABC和DEC如图①摆放,使直角顶点重合,将图①中△DEC绕点C逆时针旋转30°得到图②,点F、G分别是CD、DE与AB的交点,点H是DE与AC的交点。
(1)不添加辅助线,写出图②中所有与△BCF全等的三角形;
(2)将图②中的△DEC绕点C逆时针旋转得△D1E1C,点F、G、H的对应点分别为F1、G1、H1,如图③,探究线段D1F1与AH1之间的数量关系,并写出推理过程;
(3)在(2)的条件下,若D1E1与CE交于点I,求证:G1I=CI。
答案
解:(1)图②中与△BCF全等的有△GDF、△GAH、△ECH;(2)
证明:∵,∴
∴F1C=H1C,
又CD1=CA,
∴CD1-F1C=CA-H1C,即;(3)连结CG1,在△D1G1F1和△AG1H1中,



又∵

∴∠1=∠2,
∵∠B=60°,∠BCF=30°,
∴∠BFC=90°,
又∵∠DCE=90°,
∴∠BFC=∠DCE,
∴BA∥CE,
∴∠1=∠3,
∴∠2=∠3,
∴G1I=CI。
举一反三
如图,P是矩形ABCD下方一点,将△PCD绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连结EB,问△ABE是什么特殊三角形?请说明理由。
题型:湖北省中考真题难度:| 查看答案
如图,D、E分别是AB、AC上的点,且AB=AC,AD=AE。求证:∠B=∠C。
题型:湖北省中考真题难度:| 查看答案
(1)如图1,在△ABC中,点D、E、Q分别在AB,AC,BC上,且DE//边长,AQ交DE于点P,求证:
(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点。①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM·EN。
题型:湖北省中考真题难度:| 查看答案
(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由;
(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=,求AG,MN的长。
题型:湖北省中考真题难度:| 查看答案
数学课堂上,徐老师出示一道试题:
如图1所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN。
(1)经过思考,小明展示了一种正确的证明过程,请你将证明过程补充完整,
证明:在AB上截取EA=MC,连结EM,得△AEM,
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,
∴∠1=∠2,
又CN平分∠ACP,∠4=∠ACP=60°,
∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,
∴BA-EA=BC-MC,即BE=BM,
∴△BEM为等边三角形,
∴∠6=60°,
∴∠5=180°-∠6=120°………②
∴由①②得∠MCN=∠5,
在△AEM和△MCN中,
∵____________________,
∴△AEM≌△MCN (ASA),
∴AM=MN;
(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图2),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1,是否还成立?(直接写出答案,不需要证明)
(3) 若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=_____°时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)
题型:湖南省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.