解:(1)同意,
连接EF,
∵∠EGF=∠D=90°,EG=AE=ED,EF=EF,
∴Rt△EGF≌Rt△EDF,
∴GF=DF;
(2)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y
∵DC=2DF,
∴CF=x,DC=AB=BG=2x,
∴BF=BG+GF=3x;
在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2
∴,
∴;
(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y
∵DC=n·DF,
∴DC=AB=BG=nx
∴CF=(n-1)x,BF=BG+GF=(n+1)x
在Rt△BCF中,BC2+CF2=BF2,即y2+[(n-1)x]2=[(n+1)x]2
∴,
∴。
© 2017-2019 超级试练试题库,All Rights Reserved.