如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和为( )A.3B.4C.6D
题型:不详难度:来源:
如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和为( )
|
答案
C |
解析
试题分析:将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF, 由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°, ∵∠ABE+∠EBF=∠C′BF+∠EBF=90° ∴∠ABE=∠C′BF 又BC’=AB ∴△BAE≌△BC′F(ASA), ∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3, △ABE和△BC′F的周长和=2△ABE的周长=2×3=6. 故选:C. |
举一反三
如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF. (1)求证:AE=CF; (2)连结DB交EF于点O,延长OB至点G,使OG=OD,连结EG、FG,判断四边形DEGF是否是菱形,并说明理由.
|
在矩形ABCD中,,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE. (1)如图1,当DH=DA时, ①填空:∠HGA= 度; ②若EF∥HG,求∠AHE的度数,并求此时a的最小值; (2)如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG⊥AB,G为垂足,求a的值.
|
准备一张矩形纸片,按如图操作: 将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点. (1)求证:四边形BFDE是平行四边形; (2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积. |
以下四个命题正确的是( )A.任意三点可以确定一个圆 | B.菱形对角线相等 | C.直角三角形斜边上的中线等于斜边的一半 | D.平行四边形的四条边相等 |
|
最新试题
热门考点