如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.

如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.

题型:不详难度:来源:
如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.

(1)求证:四边形AMDN是平行四边形.
(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.
答案
(1)见解析  (2)AM=1。理由见解析
解析

试题分析:(1)根据菱形的性质可得ND∥AM,从而可得∠NDE=∠MAE,∠DNE=∠AME,根据中点的定义求出DE=AE,然后利用“角角边”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=MA,然后利用一组对边平行且相等的四边形是平行四边形证明。
(2)根据矩形的性质得到DM⊥AB,再求出∠ADM=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答。 
解:(1)证明:∵四边形ABCD是菱形,∴ND∥AM。
∴∠NDE=∠MAE,∠DNE=∠AME。
∵点E是AD中点,∴DE=AE。
∵在△NDE和△MAE中,∠NDE=∠MAE,∠DNE=∠AME,DE=AE,
∴△NDE≌△MAE(AAS)。∴ND=MA。
∴四边形AMDN是平行四边形。
(2)AM=1。理由如下:
∵四边形ABCD是菱形,∴AD=AB=2。
若平行四边形AMDN是矩形,则DM⊥AB,即∠DMA=90°。
∵∠A=60°,∴∠ADM=30°。∴AM=AD=1。
举一反三
已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.

题型:不详难度:| 查看答案
如图,在ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是
A.梯形B.矩形C.菱形D.正方形

题型:不详难度:| 查看答案
用下列一种多边形不能铺满地面的是
A.正方形B.正十边形C.正六边形D.等边三角形

题型:不详难度:| 查看答案
下列命题中假命题是
A.平行四边形的对边相等B.等腰梯形的对角线相等
C.菱形的对角线互相垂直D.矩形的对角线互相垂直

题型:不详难度:| 查看答案
如图所示,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠ABH=∠CDE.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.