如图1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.小题

如图1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.小题

题型:不详难度:来源:
如图1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.
小题1:求点B的坐标
小题2:求证:四边形ABCE是平行四边形;
小题3:如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
答案

小题1:∵在△OAB中,∠OAB=90º,∠AOB=30º,OB=8,
∴OA=4,AB=4。∴点B的坐标为(4,4)。………2分
小题2:∵∠OAB=90º,∴AB⊥轴,∴AB∥EC。 又∵△OBC是等边三角形,∴OC=OB=8。
又∵D是OB的中点,即AD是Rt△OAB斜边上的中线,
∴AD=OD,∴∠OAD=∠AOD=30º,∴OE=4。∴EC=OC-OE=4。
∴AB=EC。∴四边形ABCE是平行四边形。……………………………………………………6分
小题3:设OG=,则由折叠对称的性质,得GA=GC=8-
在Rt△OAG中,由勾股定理,得,即
解得,。∴OG的长为1。………………………………………………………………10分
解析
(1)由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,根据三角函数的知识,即可求得AB与OA的长,即可求得点B的坐标;
(2)首先可得CE∥AB,D是OB的中点,根据直角三角形斜边的中线等于斜边的一半,可证得BD=AD,∠ADB=60°,又由△OBC是等边三角形,可得∠ADB=∠OBC,根据内错角相等,两直线平行,可证得BC∥AE,继而可得四边形ABCD是平行四边形;
(3)首先设OG的长为x,由折叠的性质可得:AG=CG=8-x,然后根据勾股定理可得方程(8-x)2=x2+(42,解此方程即可求得OG的长.
举一反三

小题1:背景 :在图1中,已知线段AB,CD。其中点分别是E,F。
①若A(-1,0),B(3,0),则E点的坐标为________;
②若C(-2,2),D(-2,-1),则F点的坐标为_________;
小题2:探究: 在图2中,已知线段AB的端点坐标A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程;
归纳: 无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=______,y=_________(不必证明)。
运用:  在图3中,一次函数y=x-2与反比例函数的图像交点为A,B。
①求出交点A,B的坐标;
②若以A、O、B、P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。
题型:不详难度:| 查看答案
若一个等腰梯形的周长为30cm,腰长为6cm,则它的中位线长为(  )
A.12cmB.6cmC.18cmD.9cm

题型:不详难度:| 查看答案
矩形的两条对角线所夹的锐角为,较短的边长为12,则对角线长为           
题型:不详难度:| 查看答案
如图,已知在四边形ABCD中,∠BAD=∠BCD=900,BC=CD,E是AD延长线上一点,若DE=AB=3cm,CE=cm。

⑴试证明△ABC≌△EDC;
⑵试求出线段AD的长。
题型:不详难度:| 查看答案
如图1,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.
小题1:当PQ∥AD时, x的值等于                 
小题2:如图2,线段PQ的垂直平分线EF与BC边相交于点E,连接EP、EQ,设BE= y,求y关于x的函数关系式;
小题3:在问题(2)中,设△EPQ的面积为S,求S关于x的函数关系式,并求当x取何值时,S的值最小,最小值是多少?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.