(2011•重庆)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿O

(2011•重庆)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿O

题型:不详难度:来源:
(2011•重庆)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).
(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;
(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.
答案
解:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3﹣t,在Rt△CBF中,BC=2,tan∠CFB=,即tan60=,解得BF=2,即3﹣t=2,t=1,∴当边FG恰好经过点C时,t
(2)当0≤t<1时,S=2t+4
当1≤t<3时,S=﹣t2+3t+
当3≤t<4时,S=﹣4t+20
当4≤t<6时,S=t2﹣12t+36
(3)存在.
理由如下:在Rt△ABC中,tan∠CAB==
∴∠CAB=30°,又∵∠HEO=60°,∴∠HAE=∠AHE=30°,
∴AE=HE=3﹣t或t﹣3,
1)当AH=AO=3时,(如图②),过点E作EM⊥AH于M,则AM=AH=
在Rt△AME中,cos∠MAE═,即cos30°=
∴AE=,即3﹣t=或t﹣3=
∴t=3﹣或t=3+

2)当HA=HO时,(如图③)则∠HOA=∠HAO=30°,
又∵∠HEO=60°,∴∠EHO=90°,EO=2HE=2AE,
又∵AE+EO=3,∴AE+2AE=3,AE=1,
即3﹣t=1或t﹣3=1,∴t=2或t=4;

3)当OH=OA时,(如图④),则∠OHA=∠OAH=30°,
∴∠HOB=60°=∠HEB,∴点E和点O重合,
∴AE=3,即3﹣t=3或t﹣3=3,t=6(舍去)或t=0;

综上所述,存在5个这样的t值,使△AOH是等腰三角形,即t=3﹣或t=3+或t=2或t=2或t=0.
解析

举一反三
如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=
点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为【   】
A.1B.2C.3D.4

题型:不详难度:| 查看答案
如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直
线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).
(1)求证:h1=h2
(2)设正方形ABCD的面积为S,求证:S=(h1+h2)2+h12
(3)若h1+h2=1,当h1变化时,说明正方形ABCD的面积S随h1的变化情况.
题型:不详难度:| 查看答案
如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.

求证:DE=BE.
题型:不详难度:| 查看答案
如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=(  )
A.40°B.50°C.60°D.80°


题型:不详难度:| 查看答案
如图,在梯形ABCD中,AD∥BC,AB=DC,AC⊥BD于点O,过点A作AE⊥BC于点E,若BC=2AD=8,则tan∠ABE=__________。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.