如图,梯形ABCD中,AD∥BC,EF是梯形的中位线,对角线AC交EF于G,若BC=10cm,EF=8cm,则GF的长等于     ▲       cm.

如图,梯形ABCD中,AD∥BC,EF是梯形的中位线,对角线AC交EF于G,若BC=10cm,EF=8cm,则GF的长等于     ▲       cm.

题型:不详难度:来源:
如图,梯形ABCD中,AD∥BC,EF是梯形的中位线,对角线AC交EF于G,若BC=10cm,EF=8cm,则GF的长等于     ▲       cm.
答案
3
解析
先根据梯形中位线定理求出AD的长,再结合F是CD中点,GF∥AD,可证出G是AC中点,从而GF是△ACD的中位线,再利用三角形中位线定理可求出GF的长.
解:∵EF是梯形ABCD的中位线,
∴EF=(AD+BC),
∴8=(AD+10),
∴AD=6,
又∵GF∥AD,F是CD中点,
∴G为AC中点,
∴AG:CG=CF:DF=1:1,
∴G是AC中点,
∴GF是△ACD的中位线,
∴GF=AD=3.
举一反三
如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=.设直线AC与直线x=4交于点E.

(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;
(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值.
题型:不详难度:| 查看答案
如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.
题型:不详难度:| 查看答案
如图,正方形ABCD的边长是2,M是AD的中点.点E从点A出发,沿AB运动到点B停止.连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.

(1)设AE=x时,△EGF面积为y.求y关于x的函数关系式,并填写自变量x的取值范围;
(2)P是MG的中点,请直接写出点P运动路线的长.
题型:不详难度:| 查看答案
如图,菱形ABCD中,AB = 5,∠BCD = 120°,则对角线AC的长是
A.20B.15 C.10D.5

题型:不详难度:| 查看答案
如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.

(1)求y关于x的函数关系式;
(2)若m=8,求x为何值时,y的值最大,最大值是多少?
(3)若,要使△DEF为等腰三角形,m的值应为多少?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.