如图,在平行四边形ABCD中,AC与BD交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF∶FC=A.1∶4B.1∶3C.2∶3D.1∶2

如图,在平行四边形ABCD中,AC与BD交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF∶FC=A.1∶4B.1∶3C.2∶3D.1∶2

题型:不详难度:来源:
如图,在平行四边形ABCD中,AC与BD交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF∶FC=
A.1∶4B.1∶3C.2∶3D.1∶2

答案
D.
解析

试题分析:过E作EM⊥CD,反向延长交AB于点N,

∵平行四边形ABCD中,OB=OD,E为OD的中点,
∴BE=3DE,CD∥AB,
∴△DEF∽△BEA,



∴DF∶FC=1:2.
故选D.
考点: 1.相似三角形的判定与性质;2.平行四边形的性质.
举一反三
已知=k,则k的值是           
题型:不详难度:| 查看答案
如图,已知△ABC中,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.求证:△ACF∽△BEC;

题型:不详难度:| 查看答案
如果一个图形经过分割,能成为若干个与自身相似的图形,我们称它为“相似分割的图形”,如图所示的等腰直角三角形和矩形就是能相似分割的图形.

(1)你能否再各举出一个 “能相似分割”的三角形和四边形?
(2)一般的三角形是否是“能相似分割的图形”?如果是请给出一种分割方案并画出图形,否则说明理由.
题型:不详难度:| 查看答案
如图1,在Rt△ABC中,∠C=90º,AC=4cm,BC=3cm,点P由点B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由点A出发沿AC方向向点C匀速运动,速度为2cm/s;连结PQ。若设运动时间为t(s)(0<t<2),解答下列问题:

(1)当t为何值时?PQ//BC?
(2)设△APQ的面积为y(cm2),求y与t之间的函数关系?
(3)是否存在某一时刻t,使线段PQ恰好把△ABC的周长和面积同时平分?若存在求出此时t的值;若不存在,说明理由。
(4)如图2,连结PC,并把△PQC沿AC翻折,得到四边形PQP"C,那么是否存在某一时刻t,使四边形PQP"C为菱形?若存在求出此时t的值;若不存在,说明理由。
题型:不详难度:| 查看答案
如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是(  )

A.BC=2DE
B.△ADE∽△ABC
C.
D.S△ABC=3S△ADE
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.